Как запустить шаговый двигатель без электроники своими руками

Электроника для всех

Блог о электронике

Управление шаговым двигателем

Первая модификация силового блока. L293 вытащена.
Вид снизу

Шаговый двигатель это, как понятно из его названия, двигатель который вращается дискретными перемещениями . Достигается это за счет хитрой формы ротора и двух (реже четырех) обмоток. В результате чего, путем чередования направления напряжения в обмотках можно добиться того, что ротор будет по очереди занимать фиксированные значения.
В среднем, у шагового двигателя на один оборот вала, приходится около ста шагов. Но это сильно зависит от модели двигателя, а также от его конструкции. Кроме того, существуют полушаговый и микрошаговый режим , когда на обмотки двигателя подают ШИМованное напряжение, заставляющее ротор встать между шагами в равновесном состоянии, которое поддерживается разным уровнем напряжения на обмотках. Эти ухищрения резко улучшают точность, скорость и бесшумность работы, но снижается момент и сильно увеличивается сложность управляющей программы — надо ведь расчитывать напряжения для каждого шага.

Один из недостатков шаговиков, по крайней мере для меня, это довольно большой ток. Так как на обмотки напруга подается все время, а такого явления как противоЭДС в нем, в отличии от коллекторных двигателей, не наблюдается, то, по сути дела, мы нагружаемся на активное сопротивление обмоток, а оно невелико. Так что будь готов к тому, что придется городить мощный драйвер на MOSFET транзисторах или затариваться спец микросхемами.

Типы шаговых двигателей
Если не углубляться во внутреннюю конструкцию, число шагов и прочие тонкости, то с пользовательской точки зрения существует три типа:

  • Биполярный — имеет четыре выхода, содержит в себе две обмотки.
  • Униполярный — имеет шесть выходов. Содержит в себе две обмотки, но каждая обмотка имеет отвод из середины.
  • Четырехобмоточный — имеет четыре независимые обмотки. По сути дела представляет собой тот же униполярник, только обмотки его разделены. Вживую не встречал, только в книжках.

Униполярный отличается от биполярного только тем, что ему нужна куда более простая схема управления, а еще у него значительно слабее момент. Так как работает он только половинами обмоток. НО! Если оторвать нафиг средний вывод униполярника, то мы получим обычный биполярный . Определить какой из выводов средний не сложно, достаточно прозвонить сопротивление тестером. От среднего до крайних сопротивление будет равно ровно половине сопротивления между крайних выводов. Так что если тебе достался униполярник, а схема подключения для биполярного, то не парься и отрывай средний провод.

Где взять шаговый двигатель.
Вообще шаговики встречаются много где. Самое хлебное место — пятидюймовые дисководы и старые матричные принтеры . Еще ими можно поживиться в древних винчестерах на 40Мб, если, конечно, рука поднимется покалечить такой антиквариат.
А вот в трехдюймовых флопарях нас ждет облом — дело в том, что там шаговик весьма ущербной конструкции — у него только один задний подшипник, а передним концом вал упирается в подшипник закрепленный на раме дисковода. Так что юзать его можно только в родном креплении. Либо городить высокоточную крепежную конструкцию. Впрочем, тебе может повезет и ты найдешь нетипичный флопарь с полноценным движком.

Схема управления шаговым двигателем
Я разжился контроллерами шаговиков L297 и мощным сдвоенным мостом L298N.

Схема включения L298N+L297 до смешного проста — надо тупо соединить их вместе. Они настолько созданы друг для друга, что в даташите на L298N идет прямой отсыл к L297 , а в доке на L297 на L298N .


Осталось только подключить микроконтроллер.

  • На вход CW/CCW подаем направление вращения — 0 в одну сторону, 1 — в другую.
  • на вход CLOCK — импульсы. Один импульс — один шаг.
  • вход HALF/FULL задает режим работы — полный шаг/полушаг
  • RESET сбрасывает драйвер в дефолтное состояние ABCD=0101.
  • CONTROL определяет каким образом задается ШИМ, если он в нуле, то ШИМ образуется посредством выходов разрешения INH1 и INH2 , а если 1 то через выходы на драйвер ABCD. Это может пригодится, если вместо L298 у которой есть куда подключать входы разрешения INH1/INH2 будет либо самодельный мост на транзисторах, либо какая-либо другая микросхема.
  • На вход Vref надо подать напряжение с потенциометра, которое будет определять максимальную перегрузочную способность. Подашь 5 вольт — будер работать на пределе, а в случае перегрузки сгорит L298 , подашь меньше — при предельном токе просто заглохнет. Я вначале тупо загнал туда питание, но потом передумал и поставил подстроечный резистор — защита все же полезная вещь, плохо будет если драйвер L298 сгорит.
    Если же на защиту пофигу, то можешь заодно и резисторы, висящие на выходе sense выкинуть нафиг. Это токовые шунты, с них L297 узнает какой ток течет через драйвер L298 и решает сдохнет он и пора отрубать или еще протянет. Там нужны резисторы помощней, учитывая что ток через драйвер может достигать 4А, то при рекомендуемом сопротивлении в 0.5 Ом, будет падение напряжения порядка 2 вольт, а значит выделяемая моща будет около 4*2=8 Вт — для резистора огого! Я поставил двухваттные, но у меня и шаговик был мелкий, не способный схавать 4 ампера.

Правда на будущее, когда я буду делать роботу шаговый привод, я возьму не связку L297+L293 , а микруху L6208 которая может и чуть слабей по току, но зато два в одном! Сразу подключай двигатель и работай. Если же их покупать, то на L6208 получается даже чуть дешевле.

201 thoughts on “Управление шаговым двигателем”

А можешь посоветовать шаговик из тех, которые сейчас можно купить?
Я не знаю как у всех, но я д аже двухдюймовые флопики повыкидывал лет пять назад, а 5-ти дюймовых и в помине не было.

По продаваемым не в курсе. В нашей деревне их в продаже нету, а что там в Московии я даже не знаю.

Оппа, теперь самое время разбираться, что за шаговики у меня имеются по результатам годового потрошения CD-DVD ROM’ов. 🙂

А в сидюках/дивдюках вроде бы стоят обычные коллекторники+синхронный на шпиндель. Хотя могут быть и шаговики, но я не встречал ни разу.

Шаговики во многих CD/DVD приводах стоят — для таскания каретки с лазером (у меня минимум 3 таких экземпляра валяются). Но конструкция двигателя — как в трехдюймовых дисководах, для практического применения неудачная.

ну когда я расотрошил сиди ром там был безколлекторник + еще какойто на шпиндель
для безколлекторника я думаю применение в моделизме
http://forum.rcdesign.ru/index.php?showtopic=12183&st=560
может пригодится кому

http://forum.rcdesign.ru/index.php?showtopic=12183&st=560
может чем пригодится там модельный регултор хода
может управлять сдромным безколлекторником

работал с шаговыми движками на своей фирме.
ещё с нашими совеццкими и руссийскими.

сколько раз коротыш верещал на источниках — не счесть ) единственное оправдание — я про них ещё тогда ничего не знал и доков не имел. работал методом тыка…

всё хорошо, но нету обратной связи.

зы! от постоянных замыканий избавлялись частыми переключениями обмоток, когда надо было застопорить двигло.

. в смысле от постоянных замыкани? Как ты умудрялся его коротнуть? Одновременным замыканием ключей верхнего и нижнего плеча? Так там Dead Time надо ставить!

юзал четырёхконтактный.
помню, что если подавать на обмотки долгое время неизменный сигнал, то будет такое.
хотя потом, когда пришёл паспорт на движок, то там было сказано, что можно так стопорить его.

Долгая подача напруги на обмотки это его нормальный рабочий режим. Главное чтобы напряжение было номинальным.

Полезно, спасибо. Мне в свое время довелось раскурочить 8″ дисковод. Два шаговика лежат дожидаются своего часа. Так, что информация может пригодиться.

У меня этих дисководов полтора десятка штук!

Есть интересная статья по использованию шаговых двигателей
Журнал Современная электроника Октябрь 2004 г. стр. 46-47
Автор: Олег Пушкарев, Омск, конструкция на базе PIC16F84 и
драйвера — ULN2003A. (WWW.SOEL.RU)
Журнал очень рульный, советую почитать, статьи высылают
по почте, по запросу или подписка (в том числе бесплатная).

Еще одна задача — управление двигателем
постоянного тока на 24 в (12В), реверс,
управление скоростью. Есть буржуйская схема,
но без регулятора, могу тиснуть, схема из
стриммера, реверс-технология схемы.

кто знаком с драйвером шины ULN2804a b ULN2004a , какая разници между ними.

Кажется, один для КМОП, другой — для ТТЛ. Схема отличается только номиналом сопротивления от входного штырька до базы транзистора. В одном случае — 10ком (для КМОП), в другом — кажется, 1,5 ком, точно не помню. Ну, и входные уровни соответственно разные. В остальном — одинаково. Я сам года три назад выбирал, какие брать. А использую все же чаще ULN2003 (привычка, чтоли)…

У меня есть движок от древнего лазерного принтера. Двигатель фирмы CANON PM60-H418Z21B можно ли запустить таку вещь? Торчат из него по 3 провода с каждой обмотки. P.S. С шаговиками я делов не имел пока, но очень интересно.

Думаю без проблем. Судя по признакам это униполярный двигатель. Так что определяй где у него середина обмотки и дальше как я описал. Тока замерь сопротивление, чтобы узнать максимальный ток.

Как работает шаговый электродвигатель?

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Что такое шаговый двигатель?

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора. Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов. Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

Преимущества и недостатки шагового электродвигателя

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Устройство и принцип работы

На рисунке 1 изображены 4 обмотки, которые относятся к статору двигателя, а их расположение устроено так, что они находятся под углом 90º относительно друг друга. Из чего следует, что такая машина характеризуется размером шага в 90º.

В момент подачи напряжения U1 в первую обмотку происходит перемещение ротора на те же 90º. В случае поочередной подачи напряжения U2, U3, U4 в соответствующие обмотки, вал продолжит вращение до завершения полного круга. После чего цикл повторяется снова. Для изменения направления вращения достаточно изменить очередность подачи импульсов в соответствующие обмотки.

Типы шаговых двигателей

Для обеспечения различных параметров работы важна как величина шага, на который будет смещаться вал, так и момент, прилагаемый для перемещения. Вариации данных параметров достигаются за счет конструкции самого ротора, способа подключения и конструкции обмоток.

По конструкции ротора

Вращаемый элемент обеспечивает магнитное взаимодействие с электромагнитным полем статора. Поэтому его конструкция и технические особенности напрямую определяют режим работы и параметры вращения шагового агрегата. Чтобы на практике определить тип шагового мотора, при обесточенной сети необходимо провернуть вал, если ощущаете сопротивление, то это свидетельствует о наличии магнита, в противном случае, это конструкция без магнитного сопротивления.

Реактивный

Реактивный шаговый двигатель не оснащается магнитом на роторе, а выполняется из магнитомягких сплавов, как правило, его набирают из пластин для уменьшения потерь на индукцию. Конструкция в поперечном разрезе напоминает шестерню с зубцами. Полюса статорных обмоток запитываются противоположными парами и создают магнитную силу для перемещения ротора, который двигается от попеременного протекания электрического тока в обмоточных парах.

С переменным магнитным сопротивлением

Весомым плюсом такой конструкции шагового привода является отсутствие стопорящего момента, образуемого полем по отношению к арматуре. По факту это тот же синхронный двигатель, в котором поворот ротора идет в соответствии с полем статора. Недостатком является снижение величины вращающего момента. Шаг для реактивного двигателя колеблется от 5 до 15°.

С постоянными магнитами

В этом случае подвижный элемент шагового двигателя собирается из постоянного магнита, в котором может быть два и большее количеством полюсов. Вращение ротора обеспечивается притяжением или отталкиванием магнитных полюсов электрическим полем при подаче напряжения в соответствующие обмотки. Для этой конструкции угловой шаг составляет 45-90°.

С постоянным магнитом

Гибридные

Был разработан с целью объединения лучших качеств двух предыдущих моделей, за счет чего агрегат обладает меньшим углом и шагом. Его ротор выполнен в виде цилиндрического постоянного магнита, который намагничен по продольной оси. Конструктивно это выглядит как два круглых полюса, на поверхности которых расположены зубцы ротора из магнитомягкого материала. Такое решение позволило обеспечить отличный удерживающий и крутящий момент.

Устройство гибридного шагового двигателя

Преимущества гибридного шагового двигателя заключатся в его высокой точности, плавности и скорости перемещения, малым шагом – от 0,9 до 5°. Их применяют для высококлассных станков ЧПУ, компьютерных и офисных приборах и современной робототехнике. Единственным недостатком считается относительно высокая стоимость.

Для примера разберем вариант гибридных ШД на 200 шагов позиционирования вала. Соответственно каждый из цилиндров будет иметь по 50 зубцов, один из них является положительным полюсом, второй отрицательным. При этом каждый положительный зубец расположен напротив паза в отрицательном цилиндре и наоборот. Конструктивно это выглядит так:

Расположение пазов гибридника

Из-за чего на валу шагового двигателя получается 100 перемежающихся полюсов с отличной полярностью. Статор также имеет зубцы, как показано на рисунке 6 ниже, кроме промежутков между его компонентами.

Рис. 6. Принцип работы гибридного ШД

За счет такой конструкции можно достичь смещения того же южного полюса относительно статора в 50 различных позиций. За счет отличия положения в полупозиции между северным и южным полюсом достигается возможность перемещения в 100 позициях, а смещение фаз на четверть деления предоставляет возможность увеличить количество шагов за счет последовательного возбуждения еще вдвое, то есть до 200 шагов углового вала за 1 оборот.

Обратите внимание на рисунок 6, принцип работы такого шагового двигателя заключается в том, что при попарной подаче тока в противоположные обмотки происходит подтягивание разноименных полюсов ротора, расположенных за зубьями статора и отталкивание одноименных, идущих перед ними по ходу вращения.

По виду обмоток

На практике шаговый двигатель представляет собой многофазный мотор. Плавность работы в котором напрямую зависит от количества обмоток – чем их больше, тем плавне происходит вращение, но и выше стоимость. При этом крутящий момент от числа фаз не увеличивается, хотя для нормальной работы их минимальное число на статоре электродвигателя должно составлять хотя бы две. Количество фаз не определяет числа обмоток, так двухфазный шаговый двигатель может иметь четыре и более обмотки.

Униполярный

Униполярный шаговый двигатель отличается тем, что в схеме подключения обмотки имеется ответвление от средней точки. Благодаря чему легко меняются магнитные полюса. Недостатком такой конструкции является использование только одной половины доступных витков, из-за чего достигается меньший вращающий момент. Поэтому они отличаются большими габаритами.

Униполярный ШД

Для использования всей мощности катушки средний вывод оставляют не подключенным. Рассмотрите конструкции униполярных агрегатов, они могут содержать 5 и 6 выводов. Их количество будет зависеть от того, выводится срединный провод отдельно от каждой обмотки двигателя или они соединяются вместе.

Схема а) с различными, б) с одним выводом

Биполярный

Биполярный шаговый двигатель подключается к контроллеру через 4 вывода. При этом обмотки могут соединяться внутри как последовательно, так и параллельно. Рассмотрите пример его работы на рисунке.

Биполярный шаговый двигатель

В конструктивной схеме такого двигателя вы видите с одной обмоткой возбуждения в каждой фазе. Из-за этого смена направления тока требует использовать в электронной схеме специальные драйверы (электронные чипы, предназначенные для управления). Добиться подобного эффекта можно при помощи включения Н-моста. В сравнении с предыдущим, биполярное устройство обеспечивает тот же момент при гораздо меньших габаритах.

Подключение шагового двигателя

Чтобы запитать обмотки, потребуется устройство способное выдать управляющий импульс или серию импульсов в определенной последовательности. В качестве таких блоков выступают полупроводниковые приборы для подключения шагового двигателя, микропроцессорные драйвера. В которых имеется набор выходных клемм, каждая из них определяет способ питания и режим работы.

В зависимости от схемы подключения должны применяться те или другие выводы шагового агрегата. При различных вариантах подведения тех или иных клемм к выходному сигналу постоянного тока получается определенная скорость вращения, шаг или микрошаг линейного перемещения в плоскости. Так как для одних задач нужна низкая частота, а для других высокая, один и тот же двигатель может задавать параметр за счет драйвера.

Типичные схемы подключения ШД

В зависимости того, какое количество выводов представлено на конкретном шаговом двигателе: 4, 6 или 8 выводов, будет отличаться и возможность использования той или иной схемы их подключения Посмотрите на рисунки, здесь показаны типичные варианты подключения шагового механизма:

Схемы подключения различных типов шаговых двигателей

При условии запитки основных полюсов шаговой машины от одного и того же драйвера, по данным схемам можно отметить следующие отличительные особенности работы:

  • Выводы однозначно подводятся к соответствующим клеммам устройства. При последовательном соединении обмоток увеличивает индуктивность обмоток, но понижает ток.
  • Обеспечивает паспортное значение электрических характеристик. При параллельной схеме увеличивается ток и снижается индуктивность.
  • При подключении по одной фазе на обмотку снижется момент на низких оборотах и уменьшает величину токов.
  • При подключении осуществляет все электрические и динамические характеристики согласно паспорта, номинальный токи. Значительно упрощается схема управления.
  • Выдает куда больший момент и применяется для больших частот вращения;
  • Как и предыдущая предназначена для увеличения момента, но применяется для низких частот вращения.

Управление шаговым двигателем

Выполнение операций шаговым агрегатом может осуществляться несколькими методами. Каждый из которых отличается способом подачи сигналов на пары полюсов. Всего выделяют тир метода активации обмоток.

Волновой – в таком режиме происходит возбуждение только одной обмотке, к которой и притягиваются роторные полюса. При этом шаговый двигатель не способен вытягивать большую нагрузки, так как выдает лишь половину момента.

Волновое управление

Полношаговый — в таком режиме происходит одновременная коммутация фаз, то есть, возбуждаются сразу обе. Из-за чего обеспечивается максимальный момент, в случае параллельного соединения или последовательного включения обмоток будет создаваться максимальное напряжение или ток.

Полношаговое управление

Полушаговый – представляет собой комбинацию двух предыдущих методов коммутации обмоток. Во время реализации которого в шаговом двигателе происходит поочередная подача напряжения сначала в одну катушку, а затем сразу в две. Благодаря чему обеспечивается лучшая фиксация на максимальных скоростях и большее количество шагов.

Полушаговое управление

Для более мягкого управления и преодоления инерции ротора используется микрошаговое управление, когда синусоида сигнала осуществляется микроступенчатыми импульсами. За счет чего силы взаимодействия магнитных цепей в шаговом двигателе получают более плавное изменение и, как следствие, перемещение ротора между полюсами. Позволяет в значительной степени снизить рывки шагового двигателя.

Без контроллера

Для управления бесколлекторными двигателями применяется система Н-моста. Который позволяет переключать полярность для реверса шагового двигателя. Может выполняться на транзисторах или микросхемах, которые создают логическую цепочку для перемещения ключей.

Схема Н-моста

Как видите, от источника питания V напряжение подается на мост. При попарном включении контактов S1 – S4 или S3 – S2 будет происходить движение тока через обмотки двигателя. Что и обусловит вращение в ту или иную сторону.

С контроллером

Устройство контроллера позволяет осуществлять управление шаговым двигателем в различных режимах. В основе контроллера лежит электронный блок, формирующий группы сигналов и их последовательность, посылаемых на катушки статора. Для предотвращения возможности его повреждения в случае короткого замыкания или другой аварийной ситуации на самом двигателе каждый вывод защищается диодом, который не пропусти импульс в обратную сторону.

Подключение через контроллер однополярного шагового двигателя

Популярные схемы управления ШД

Является одним из наиболее помехозащищенных способов работы. При этом прямой и инверсный сигнал напрямую подключается к соответствующим полюсам. В такой схемы должно применяться экранирование сигнального проводника. Прекрасно подходит для нагрузки с низкой мощностью.

Схема управления от контроллера с выходом типа «открытый коллектор»

В данной схеме происходит объединение положительных вводов контроллера, которые подключаются к положительному полюсу. В случае питания выше 9В требуется включение в схему специального резистора для ограничения тока. Позволяет задавать необходимое количество шагов со строго установленной скоростью, определить ускорение и т.д.

Простейший драйвер шагового двигателя своими руками

Чтобы собрать схему драйвера в домашних условиях могут пригодиться некоторые элементы от старых принтеров, компьютеров и другой техники. Вам понадобятся транзисторы, диоды, резисторы (R) и микросхема (RG).

Схема простейшего драйвера

Для построения программы руководствуйтесь следующим принципом: при подаче на один из выводов D логической единицы (остальные сигнализируют ноль) происходит открытие транзистора и сигнал проходит к катушке двигателя. Таким образом, выполняется один шаг.

На основе схемы составляется печатная плата, которую можно попытаться изготовить самостоятельно или сделать под заказ. После чего на плате впаиваются соответствующие детали. Устройство способно управлять шаговым устройством от домашнего компьютера за счет подключения к обычному USB порту.

Шаговые двигатели: особенности и практические схемы управления. Часть 2

Владимир Рентюк, Запорожье, Украина

Часть 2. Схемотехника систем управления

Выше были рассмотрены наиболее важные общие вопросы использования шаговых двигателей, которые помогут в их освоении. Но, как гласит наша любимая украинская поговорка: «Не повірю поки не провірю» («Не поверю, пока не проверю»). Поэтому перейдем к практической стороне вопроса. Как уже отмечалось, шаговые двигатели – это удовольствие не из дешевых. Но они имеются в старых принтерах, считывателях гибких и лазерных дисков, например, SPM-20 (шаговый двигатель для позиционирования головки в дисководах 5″25 Mitsumi) или EM-483 (от принтера Epson Stylus C86), которые можно найти у себя в старом хламе или купить за копейки на радиобазаре. Примеры таких двигателей представлены на Рисунке 8.

а)б)
Рисунок 8.Шаговые двигатели, используемые в устаревшей компьютерной технике.
а) Шаговый двигатель SPM-20 для позиционирования головки в
дисководах 5″25 Mitsumi. (
Фото с сайта).
б) Шаговый двигатель EM-483 от принтера Epson Stylus C86. (Фото с сайта).

Наиболее простыми для начального освоения являются униполярные двигатели. Причина кроется в простоте и дешевизне их драйвера управления обмотками. На Рисунке 9 приведена практическая схема драйвера, использованного автором статьи для униполярного шагового двигателя серии P542-M48 [6].

Рисунок 9.Драйвер униполярного шагового двигателя. (Дополнительная
информация по подключению на Рисунках 10 и 12).

Естественно, что выбор типа транзистора для ключей управления обмотками должен происходить с учетом максимального тока коммутации, а его подключение учитывать необходимость заряда/разряда емкости затвора. В ряде случаев прямое соединение MOSFET с ИМС коммутатора может быть недопустимым. Как правило, в затворах устанавливаются последовательно включенные резисторы небольших номиналов. Но в ряде случае необходимо предусмотреть еще и соответствующий драйвер для управления ключами, который обеспечит заряд/разряд их входной емкости. В некоторых решениях предлагается в качестве ключей использовать биполярные транзисторы. Это подходит только для очень маломощных двигателей с небольшим током обмоток. Для рассматриваемого двигателя с рабочим током обмоток I = 230 мА ток управления по базе ключа должен составить, по крайней мере, 15 мА (хотя для нормальной работы ключа необходимо, чтобы ток базы равнялся 1/10 рабочего, то есть 23 мА). Но такой ток от микросхем серии 74HCхх забрать невозможно, поэтому потребуются дополнительные драйверы. Как хороший компромисс, можно использовать IGBT, сочетающие в себе достоинства полевых и биполярных транзисторов.

С точки зрения автора статьи, самым оптимальным для управления коммутацией обмоток двигателей небольшой мощности является использование подходящих по току и сопротивлению открытого канала RDC(ON) MOSFET, но с учетом рекомендаций, описанных выше. Мощность, рассеиваемая на ключах для выбранного в качестве примера двигателя серии P542-M48, при полной остановке ротора не превысит

PVT = RDC(ON) × I 2 = 0.25 × (0.230) 2 = 13.2 мВт.

Транзисторы IRLML2803 с RDC(ON) = 0.25 Ом имеют допустимую мощность рассеяния 540 мВ и постоянный ток стока 0.93 А при температуре 70 °С. Так что, они полностью соответствуют требованиям и обеспечат надежную работу драйвера. В большинстве случаев, учитывая низкие частоты коммутации, проведенной выше оценки вполне достаточно. Поскольку детальное рассмотрение особенностей работы ключей не входит в рамки данной статьи, то для их выбора и полного расчета можно воспользоваться методикой, приведенной, например, в [7].

Еще одним важным моментов является правильный выбор так называемых снаберных диодов, шунтирующих обмотку двигателя (VD1…VD4 на Рисунке 9). Назначение этих диодов – гасить ЭДС самоиндукции, возникающую при выключении управляющих ключей. Если диоды выбраны неверно, то неизбежен выход из строя транзисторных ключей и устройства в целом. Обратите внимание, что в мощные MOSFET такие диоды, как правило, уже встроены.

Режим управления двигателем задается коммутатором. Как уже было отмечено выше, наиболее удобным и эффективным является управление с перекрытием фаз (Рисунок 4б). Такой режим легко реализуется при помощи триггеров. Практическая схема универсального коммутатора, который использовал автор статьи как в ряде отладочных модулей (в том числе, и с приведенным выше драйвером), так и для практических применений, приведена на Рисунке 10.

Рисунок 10.Схема универсального коммутатора шагового двигателя (с реверсом).

Схема на Рисунке 10 пригодна для любых типов двигателей (униполярных и биполярных). Частота вращения двигателя задается внешним тактовым генератором (скважность любая), сигнал с которого подается на вход «ШАГИ», а направление вращения устанавливается через вход «НАПРАВЛЕНИЕ». Оба сигнала имеют логические уровни и, если для их формирования используются выходы с открытым коллектором, то потребуются соответствующие резисторы подтяжки (на Рисунке 10 они не показаны). Временная диаграмма работы коммутатора приведена на Рисунке 11.

Рисунок 11.Временная диаграмма универсального коммутатора с реверсом.
Верхние две осциллограммы – Q1 D2-2, Q2 D2-2; нижние две – Q1 D2-1, Q2 D2-1.
Маркеры показывают область изменения очередности включения фаз.

Хочу обратить внимание читателей: в Интернете вы могли встретить похожую схему, выполненную не на D-триггерах, а на JK-триггерах. Будьте внимательны! В ряде этих схем допущена ошибка в подключении ИМС. Если нет необходимости в реверсе, то схема коммутатора может быть значительно упрощена (см. Рисунок 12), при этом частота вращения останется неизменной, а диаграмма управления будет аналогичной той, которая приведена на Рисунке 11 (осциллограммы до переключения очередности фаз).

Рисунок 12.Упрощенная схема коммутатора шагового
двигателя (без реверса).

Поскольку особых требований к сигналу «ШАГИ» не предъявляется, для его формирования может использоваться любой подходящий по уровням выходного сигнала генератор. Для своих отладочных модулей автор использовал генератор на базе ИМС таймера 555 (Рисунок 13).

Рисунок 13.Регулируемый генератор импульсов для
коммутатора шагового двигателя.

Для питания собственно двигателя можно использовать схему, приведенную на Рисунке 14, а схему коммутатора и генератора питать или от отдельного источника питания +5 В или через дополнительный маломощный стабилизатор. Земли силовой и сигнальной частей в любом случае необходимо разделить.

Рисунок 14.Схема питания шагового двигателя с режимами
удержания и выключения.

Схема на Рисунке 14 обеспечивает подачу двух стабильных по уровню напряжений для питания обмоток двигателя: 12 В в рабочем режиме и 6 В в режиме удержания. (Формулы, необходимые для расчета выходного напряжения, приведены в [8]). Рабочий режим включается подачей высокого логического уровня на контакт «ТОРМОЗ» разъема Х1. Допустимость снижения напряжения питания определяется тем, что, как уже отмечалось в первой части статьи, момент удержания шаговых двигателей превышает момент вращения. Так, для рассматриваемого двигателя P542-M48 момент удержания с редуктором 25:6 равен 19.8 Н·см, а момент вращения всего 6 Н·см. Этот подход позволяет при остановке двигателя уменьшить потребление мощности с 5.52 Вт до 1.38 Вт! Полное отключение двигателя осуществляется подачей высокого логического уровня на контакт «ВКЛ/ВЫКЛ» разъема Х1.

Если схема управления имеет выход на транзисторах с открытым коллектором, то в ключах VT1, VT2 необходимости нет, и выходы можно подключить непосредственно вместо упомянутых ключей.

Примечание: В этом варианте использование резисторов подтяжки недопустимо!

В качестве дросселя автор использовал катушку SDR1006-331K (Bourns). Общее питание формирователя напряжения для обмоток двигателя можно уменьшить до 16 – 18 В, что не скажется на его работе. Еще раз обращаю внимание: при самостоятельном расчете не забудьте учитывать, что формирователь обеспечивает режим с перекрытием фаз, то есть необходимо закладываться на номинальный ток схемы питания, равный удвоенному максимальному току обмоток при выбранном напряжении питания.

Задача управления биполярными двигателями более сложна. Основная проблема в драйвере. Для этих двигателей требуется драйвер мостового типа, и делать его, тем более в современных условиях, на дискретных элементах – неблагодарная задача. Да, этого и не требуется, так как имеется очень большой выбор специализированных ИМС. Все эти ИМС условно можно свести к двум типам. Первый – весьма популярная у любителей робототехники ИМС L293D STMicroelectronics [9] или ее варианты от Texas Instruments. Они относительно недороги и подходят для управления маломощными двигателями с током обмоток до 600 мА. ИМС имеют защиту от перегрева; устанавливать ее необходимо с обеспечением теплоотвода, которым служит фольга печатной платы [9]. Второй тип – это уже знакомая читателям по публикации в [1] ИМС LMD18245 [2].

Автор использовал драйвер L293DD в схеме для управления биполярным двигателем малой мощности типа 20M020D2B 12 В/0.1 А во время изучения проблемы использования шаговых двигателей. Этот драйвер удобен тем, что содержит четыре полумостовых ключа, поэтому для управления биполярным шаговым двигателем требуется всего одна ИМС. Полная схема, приведенная в [10] и многократно повторенная на интернет-сайтах, пригодна для использования в качестве тестовой платы. На Рисунке 15 показано включение ИМС драйвера (с привязкой к коммутатору из Рисунка 10), поскольку именно эта часть сейчас представляет для нас интерес, а Figure 6 (Bipolar Stepping-Motor Control) из спецификации [9] не совсем понятна начинающему пользователю. Она вводит в заблуждение, например, тем, что показаны внешние диоды, которые на самом деле встроены в ИМС и прекрасно справляются с обмотками маломощных двигателей. Естественно, что драйвер L293D может работать с любым коммутатором. Выключается драйвер логическим нулем по входу R.

Примечание: ИМС L293, в зависимости от изготовителя и суффиксов, указывающих на тип корпуса, имеют различия в нумерации и количестве выводов!

Рисунок 15.Схема подключения драйвера L293DD.

Для более мощных двигателей автор статьи использовал драйверы LMD18245. Полная схема тестового модуля приведена на Рисунке 16.

Рисунок 16.Схема управления биполярным шаговым двигателем
с использованием драйвера LMD18245.

В отличие от L293DD, LMD18245 является не четырех-, а двухканальным драйвером, поэтому для реализации схемы управления требуются две ИМС. Драйвер LMD18245 выполнен по DMOS технологии, содержит схемы защиты от перегрева, короткого замыкания и выполнен в удобном 15-выводном корпусе ТО-220, что позволяет легко отводить от его корпуса излишнее тепло. В качестве задающего генератора использовалась схема, приведенная ранее на Рисунке 13, но с увеличенным до 4.7 кОм сопротивлением резистора R2. Для подачи одиночных импульсов используется кнопка BH1, позволяющая сдвинуть ротор двигателя на один шаг. Направление вращения ротора определяется положением переключателя S1. Включение и выключение двигателя осуществляется выключателем S2. В положение «ВЫКЛ» ротор двигателя освобождается, и его вращение импульсами управления становится невозможным. Режим удержания уменьшает максимальный ток, потребляемый обмотками двигателя, с двух до одного ампера. Если импульсы управления не подаются, то ротор двигателя остается в зафиксированном положении с пониженной вдвое мощностью потребления. Если же импульсы подаются, то вращение двигателя в этом режиме осуществляется с пониженным на малых скоростях вращения моментом. Необходимо заметить, что поскольку при полношаговом управлении «two-phase-on» включены обе обмотки, ток двигателя удваивается, а схема драйвера должна рассчитываться исходя из требований обеспечения заданного тока двух обмоток (резисторы R3, R8).

Схема содержит описанный ранее двунаправленный двухфазовый формирователь на D-триггерах (Рисунок 10). Максимальный ток драйвера задается резистором, включенным в цепь контакта 13 ИМС LMD18245 (резисторы R3, R8), и двоичным кодом на контактах цепи управления тока (выводы 8, 7, 6, 4). Формула для расчета максимального тока приведена в спецификации на драйвер [2]. Ограничение тока осуществляется импульсным методом. При достижении максимально заданной величины тока выполняется его «нарезка» («chopping»). Параметры этой «нарезки» задаются параллельной RC цепочкой, подключенной к выводу 3 драйвера. Достоинством ИМС LMD18245 является то, что токозадающий резистор, не включенный непосредственно в цепь двигателя, имеет достаточно большой номинал и маленькую рассеиваемую мощность. Для рассматриваемой схемы максимальный ток в амперах, согласно приведенной в [2] формуле, составляет:

VDAC REF – опорное напряжение ЦАП (в рассматриваемой схеме 5 В);
D – задействованные разряды ЦАП (в этом режиме используются все 16 разрядов);
RS – сопротивление токоограничивающего резистора (R3 = R8 = 10 кОм).

Соответственно, в режиме удержания (поскольку используются 8 разрядов ЦАП), максимальный ток составит 1 А.

В заключение необходимо отметить, что драйвер LMD18245 позволяет реализовать и микрошаговое управление. Как упоминалось выше, такой режим уменьшает, и даже подавляет паразитный резонанс ротора. Поддержка такого режима для указанного драйвера осуществляется микропроцессором, управляющим входами ЦАП.

Как можно видеть из предложенной статьи, шаговые двигатели хоть и сложнее в управлении, чем коллекторные, но не настолько, чтобы отказываться от них. Как говорили еще древние римляне: «Дорогу осилит идущий». Естественно, что на практике для многих приложений управление шаговыми двигателями целесообразно делать на основе микроконтроллеров, которые легко сформируют нужные команды для драйверов и выполнят роль коммутаторов. Дополнительную информацию и более детальное рассмотрение проблем, связанных с применением шаговых двигателей, кроме как по упомянутым выше ссылкам [3, 4, 7], можно почерпнуть из ставшей уже классикой монографии Кенио Такаши [11] и на специализированных интернет-сайтах, например, [12].

Есть еще один момент, на который автор статьи хотел бы обратить внимание читателей. Шаговые двигатели, как впрочем, и все двигатели постоянного тока, обратимы. Что имеется ввиду? Если приложить внешнее вращающее усилие к ротору, то с обмоток статора можно снять ЭДС, то есть двигатель становится генератором, причем весьма и весьма эффективным. Автор статьи экспериментировал с этим вариантом использования шаговых двигателей во время работы консультантом по силовой электронике в компании, занимающейся ветроэнергетикой. Необходимо было на простых макетах отработать ряд практических решений. По наблюдению автора статьи, эффективность шагового двигателя в таком применении была выше, чем у аналогичного по параметрам и габаритам коллекторного двигателя постоянного тока. Но это уже другая история.

Управление шаговым двигателем с помощью Arduino

В этом посте я постараюсь вкратце рассказать про шаговые электродвигатели, и как с ними можно работать с помощью нашего любимого ардуино.

Многие из вас знакомы с маленькими моторчиками, из которых исходят всего 2 провода, они часто встречаются в детских игрушках, например, в машинках.

Это коллекторные электродвигатели постоянного тока. Они могут напрямую подключатся к источнику питания и будут всегда вращаться с постоянной скоростью, в зависимости от подаваемого напряжения. Если необходимо изменить направление вращения, то на нашем моторе нужно просто поменять местами “+” и “-” и он сразу начнёт крутиться в другую сторону. За счёт их простой конструкции, они имеют небольшую стоимость и простоту в управлении.

Но есть ещё один из распространенных типов двигателей – это шаговые электродвигатели.

Вы могли их встречать, если разбирали CD-DVD привода, жёсткие диски, принтеры или другие электронные устройства, в механической части которых нужно чётко контролировать обороты, перемещения или другие необходимые кинематические движения.

Вот так выглядит шаговый электродвигатель с винтовым валом из оптического привода:

Как видно – здесь уже больше, чем 2 провода и напрямую подключить такой мотор к источнику питания просто так не получиться из-за совсем другой конструкции самого двигателя. Если для нашего первого моторчика достаточно было подать “+” и “-” на соответственные клемы и он начинал вращаться, то для шагового электродвигателя нужно подавать цифровые электронные сигналы управления, которые будут сообщать двигателю на сколько и в какую сторону ему необходимо вращаться. Это возможно осуществить с помощью устройства, которое будет генерировать и отправлять эти сигналы на драйвер, а он, в свою очередь, напрямую управлять обмотками двигателя.

Мы рассмотрим пример, как подключить шаговый электродвигатель к Arduino Mega 2560 – именно оно и будет тем устройством, которое генерирует нужные электронные сигналы управления.

Я взял мотор формата Nema 17 – это гибридный шаговый двигатель, который часто встречается в 3Д принтерах, ЧПУ системах, робототехнике и т.д.

Фото двигателя в разрезе:

Драйвер на микросхеме TB6600 – это довольно неплохой контроллер, который можно использовать с двигателями до 4.5 А, 50 В. Для домашних 3Д принтеров и ЧПУ систем его полностью достаточно.

Чтобы драйвер работал, необходим внешний источник питания с напряжением 8-50 В (рекомендуется 36 В). Именно с него наш двигатель будет получать энергию для своей работы. А логические сигналы Dir – направление вращения и Pulse – сигнал шага, драйвер будет получать от ардуино.

У данного двигателя 4 обмотки: A+, A-, B+, B-, их нужно соединить с соответствующими выходами на плате драйвера.

Для управления шаговым двигателем можно использовать различные библиотеки, которые упрощают жизнь, если необходимо как-то динамически управлять двигателем, например “AccelStepper” и тому подобные. Также есть различные программные комплексы для управления 3Д принтерами или ЧПУ станками.

Мы же рассмотрим простой пример вращения двигателя с постоянной скоростью, который не сложно будет повторить всем желающим. Также, так ещё удобно проверять общее состояние двигателя.

Здесь написан цикл, который беспрерывно будет отправлять логические сигналы к нашему драйверу, а он уже на двигатель.

Примерно так всё работает:

P.S. Сильно в теорию я не вдавался, потому что на это нужен не один пост, да и не всем она понравится 🙂

Дубликаты не найдены

P.S. Сильно в теорию я не вдавался, потому что на это нужен не один пост, да и не всем она понравится 🙂

Почему хотя бы не рассказать об отличиях униполярного от биполярного двигателя? Почему не привести схему модуля(хотя бы из даташита на микросхему)?
Ладно упущен режим микрошага, но основу то можно было скопипастить написать.
Зачем было использовать ардуину? Много нагляднее было бы пару кнопок повесить.

Спасибо за совет, в будущем буду стараться поместить всё в один пост.

Зачем было использовать ардуину? Много нагляднее было бы пару кнопок повесить.

Не совсем понял вопрос

Просто хотелось показать пример именно с ардуино, ведь с ним можно открыть больше возможностей, чем просто “отправлять шаг”.

Ребят, вижу тут есть знающие люди.
Собираю фотопиццу (мало ли кто знаком), не крутит шаговый двигатель, бывает после танцев с бубном крутит, но очень странно (не по программе).

Драйвер шагового двигателя менял – не помогло

В чем может быть проблема?

а будет электрическая схема? =) мотор гудит когда не крутится?

Нет, он может включаться раза с 5-6, тогда и гудит и крутит (херово но крутит), как будто где-то плохой контакт, хотя менял провода, прозванивал – все в порядке.
По этой схеме делал, только у меня шиелд а тут просто экран.

@BesttseB , проверь код, а именно повнимательнее, где задается частота импульсов. Возможно слишком большая частота импульсов, движок просто ахреневает. Попробуй отдельно протетстить шаговик+МК+твой код, без обвеса. У меня было, что движок сначала разгонялся, потом из-за большой частоты стопорился и когда уменьшалась, то он снова продолжал крутиться.

Автор показывает, как быстро и равномерно крутится шаговый двигатель. Ясно. Понятно. Тема раскрыта на 10 из 10.

а обязательно покупать эту здоровую мандулу? DRV8825 прекрасно справляется с шаговиками до NEMA17 включительно и стоит в несколько раз дешевле + под них на ардуины есть такиеже дешманские шилды – например ардуино 2560 + шилд + 5 драйверов = 1050рублей на али

4988 не то, чтобы хуже, но в DRV8825 можно микрошаг поменьше поставить(актуально для станков с ременнойзубчатой передачей и 3D принтеров) и, как мне кажется, на DRV8825 шаговики звучат благороднее =)

Не конечно, для каждой цели целесообразен тот или иной драйвер. Просто у меня был в наличии только этого формата (остался после ЧПУ системы: https://youtu.be/N3xBpIMORf4 )

Точно, две обмотки А и Б, соответственно + и – на каждой обмотке.

Спасибо, что нашёл ошибку, она как-то автоматически получилась – вижу четыре буквы на плате – пишу, что четыре обмотки)

Если бы копипастил, то думаю, что не сделал такую глупую ошибку, с головы старался писать.

а можно статью про то, как с компа управлять этим всем. желательно с кодом.

т.е., допустим, мне надо,чтобы после нажатия кнопки на компе, двигатель совершал серию поворотов. как это программируется?

Serial гугли. С компа посылаешь строку на ардуину, она разбирает её и выполняет команду по аргументам.

а с компа в зависимости от языка просто посылаешь в серийный порт строку.

Аргументы придумать не сложно.

Можно заморочиться с wi-fi или ethernet shield, там поднять веб-сервер и из браузера делать запросы. Например, NodeMCU умеет из коробки это, т.к. на ней встроен в-ф

такое ощущение, что автор и рад бы нам рассказать о шаговиках, но не разбирается в теме абсолютно. вешать NEMA17 на такой монструозный драйвер? перепутать количество обмоток? использовать такой дикий метод управления?

хотя бы схему шаговика в пэинте нарисовали, авось сами разобрались бы, как он работает.

Похоже, этим драйвером мотор от сидюка не запустишь – напряжение слишком высокое. У мотора +5в, а питание драйвера от 8 в начинается.

Вот расскажите мне как вы к этим двигателям приделываете достойно какую нибудь звездочку или сверлышко?

. ну т.е. у меня на одном таком движке было по маркировке до 38V и 3А максимальная подача (оптимальное 12V & 1.5A), где то около 30V&3A подавал. Как бы я не крепил это сверло, болтами, суперклеем, и тем и тем, эпоксидкой также вместе взятой и т.д. и т.п. в т.ч. и резал/сверлил это чертову маленькую ось, чтоб хоть как в неё вцепиться (по сути надо было его в таком режиме использовать весьма недолго, так что должно было быть норм), всё срывало! . если застревало хоть в мало-мальски не протачиваемом проёме, т.к. крутилось бешено, то даже небольшое торможение со временем всё равно давало срыв и приходилось монтажить заново. Да конечно я и искал напряжение оптимальное, но это либо получалось дико долгое сверление, которое добивало, либо срывало.

Вот как вы за такую ось цепляетесь нормально? . такая ж мелкая сволочь.

..Эпоксидка блин, ну ты даёшь)

ааа оказывается это цангой называется) а я её получается самодельную делал из болтов, еще и моментов поверх заливал, тоже срывало (

И да еще когда звездочку надевал, то хотелось бы чтоб при сильной нагрузке она бы просто становилась вместе с осью и тянуло бы, и можно было бы в зависимости от того на сколько ей тяжело тянуть, то увеличивать нагрузку тока, то уменьшать, а так получается ты ей увеличиваешь нагрузку и эта ось еще и нафиг просверливает в твоей звездочке еще большую дырень, также из-за того само греется от дикого трения тоже. И там вообще мне ничего не помогало. Оставался только один вариант – согнуть её, но побоялся ибо эта хрень во первых маленькая, тут еще умудриться надо, а потом еще не факт что к согнутой удастся правильно примонтажить то, что нужно так, чтобы оно крутилось не со смещенным центром.

Короче сейчас уже прикупил двигатели то с нормальными осями, прям выплавленные стальные звездочки уже там. Но вопрос меня мучить не перестал, ибо таких движков на рынке ну просто валом, а тот нормальный я еле достал, а где и как нормально использовать бы можно было те движки я так и не понимаю, только разве что для игрушек?) ну или просто чтоб лишь бы прихватить.

Есть ещё один вариант – запрессовка шестерней.

Держит намертво, промышленный стандарт

Вот тут можно увидеть пример, показывают два стандарта установки шестерней на вал –

2)посадочное место (щлиц на валу)

Ну вот посадочное место само то, его мне по сути только и оставалось сделать, только надо будет, если начну опять такое делать, не напильником, а молотком квадратик с оси набить и потом уже болтами хвататься.

Но это хорошо, когда еще ось хоть как то нормально торчит, а есть у меня еще одно, даже для меня, исключение (вот там прям с кулак моторчики были) мелочь 2,5-3 см с осью на 1,2 в диаметре убийца до 50 вольт можно подрубать – это жесть! Я на обычные по 20 вольт выставляю и потом руки трясутся после них (ну бывает в руках держишь тестируешь, что будет если зажать шестеренку или еще что или тупо смотришь на его работу, зависнешь или любуешься или и то и то:D). А на того зверя дал 50 вольт, да у меня чуть зубы не повыпадали! 😀

(нет ебом меня не токнуло), но эта хрень в руках тряслась так, что я думал второй адронный коллайдер запустил только что и сейчас он у меня в руке образует черную дыру, и трёх секунд он не дал мне его удержать (да я его даже отключить не успел), выпрыгнул из руки оторвал контакты и с помощью своего гироскопического эффекта весьма точно впился в пол, так еще и остатками момента кручения сделал в нем небольшую дырку.

Сказать, что я офигел, это ничего не сказать. После такого я положил его подальше и решил использовать только в реально экстренных случаях)

All-Audio.pro

Статьи, Схемы, Справочники

Запуск шагового двигателя без контроллера

У меня много различной оргтехники, которая вышла из строя. Выбрасывать я её не решаюсь, а вдруг пригодится. Из её частей возможно сделать что-нибудь полезное. К примеру: шаговый двигатель, который так распространен, обычно используется самодельщиками как мини генератор для фонарика или ещё чего. Но я практически никогда не видел, чтобы его использовали именно как двигатель для преобразования электрической энергии в механическую. Оно и понятно: для управления шаговым двигателем нужна электроника.

Поиск данных по Вашему запросу:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Перейти к результатам поиска >>>

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Шаговые Двигатели Подключение и Запуск

Как запустить шаговый двигатель без драйвера

Создавая станок с ЧПУ своими руками , большинство на начальном этапе останавливается на выборе покупного чаще всего — китайского контроллера для шаговых двигателей, потому как это экономит время.

Но уже после того, как станок готов и запущен, начинает закрадываться ощущение, что что-то не то… Чего-то не хватает или что-то сделано не правильно, или не доделано… Появляется некоторое недовольство, вопросы, связанные с точностью станка с ЧПУ. И так действительно происходит! Это же справедливо и для основы основ станка с ЧПУ — механизма линейного перемещения и электроники управления, а именно — контроллера шагового двигателя.

Я ничего не имею против китайских контроллеров. У меня самого стоит сейчас самый дешевый китайский контроллер. Но его я брал осознанно, чтобы понять, чего мне не хватает в промышленном контроллере и что я хочу получить в итоге, создавая контроллер шагового двигателя своими руками.

Первое, что я хочу получить от своего контроллера шагового двигателя — это калиброванный микрошаг, который бы настраивался под конкретный экземпляр шагового двигателя. Все это как раз из-за нелинейности характеристики шагового двигателя.

Вот почему нельзя использовать микрошаговый режим в обычных китайских контроллерах для повышения точности разрешающей способности перемещений своего станка с ЧПУ! Кто-то, возможно, задастся вопросом — откуда берется эта нелинейность? А все дело в том, что на самом деле шаговый двигатель вообще не предназначен для работы в режиме микрошага!

Шаговый двигатель предназначен только для того, чтобы шагать — ать, два! А производители контроллеров радостно подхватили эту фишку и преподносят микрошаг, как некий стандарт де-факто! И впаривают свои контроллеры невдумчивым потребителям. Достаточно снять со станка шаговик, приделать к нему лазерную указку, включить в контроллере режим микрошага хотя он, конечно же, у вас включен! Можно прямо из Mach3 или LinuxCNC, выбрав самую минимальную подачу в ручном режиме или задавая микро-перемещения через G-коды.

После каждого микрошага делайте отметки на листе бумаги, закрепленному на стене скотчем, в том месте, куда светит луч лазера. Уже после нескольких микрошагов, вы заметите, что между насечками получилось ну просто неприлично разное расстояние! Закончим на этом ругать производителей. Они на самом деле ничего плохого не делают.

Люди хотели микрошаг — люди его получили! Сосредоточимся лучше на том, чего на самом деле хотели получить конечные пользователи от своего контроллера шагового двигателя?

А хотели они получить не деление управляющего шаговыми двигателями сигнала на 8, на 16 и т. Но какое же для этого нужно подавать управляющее напряжение? Отвечу однозначно — хрен его знает! Поясню… Дело в том, что разные производители делают разные двигатели, применяют разные технологии с разным качеством и разной погрешностью. И получается так, что все шаговые двигатели разные!

Даже в пределах одного типа и одной партии. Легла где-то в обмотке шагового двигателя проволочка слегка не на ту сторону — характеристика поменялась! Ну и так далее — до фанатизма. Именно поэтому микрошаг нужно настраивать под каждый конкретный двигатель, и это должно настраиваться в контроллере шагового двигателя! И именно такой контроллер я сейчас и разрабатываю. Схема моего контроллера будет очень проста. Силовыми элементами, непосредственно управляющими обмотками двигателя, будут являться ключевые MOSFET-транзисторы, подключенные в виде Н-моста.

Ключами будет управлять микроконтроллер. Никаких дорогостоящих микросхем-драйверов в моей схеме не будет. Вместо них будет парочка ферритовых колечек из сгоревших энергосберегающих ламп, которые отлично подходят для управления затворами MOSFET-транзисторов. В общем, я стараюсь сделать контроллер шагового двигателя доступным для повторения в домашних условиях. Как видно, управление затвором осуществляется через повышающий импульсный трансформатор на ферритовом кольце.

Повышающий трансформатор нужен, чтобы силовой ключ полностью открывался от 5-тивольтового сигнала управления, поступающего с выхода микроконтроллера. Программа управления шаговым двигателем может быть условно разделена на несколько взаимосвязанных функциональных блоков.

Подробнее об этих блоках и о их работе я постараюсь написать в ближайшее время. Следите за обновлениями — проект находится в активной разработке. Я тоже попробовал забить на микрошаги, но у меня слишком все без них громыхает из-за резонанса Спасибо за схему — полезная! Только там не H-мост, а 2 полумоста, если быть точнее. Это очень хороший вариант экономии на деталях — с двухполярным питанием потребуется в два раза меньше силовых транзисторов. Еще я бы туда опторазвязку с LPT-портом добавил, чтобы порт обезопасить… мало ли что.

Как только я понял, что мне паять 3 таких платы мозг сразу стал думать как бы схему упростить. Громыхание шаговиков у меня несоизмеримо со сверлящим мотором да и самим процессом сверления. Между силовым блоком и портом у меня ещё плата разводки на дешифраторах, питание 5 вольт. Ибо линий у порта 8, а у 3-х силовых блоков — Поэтому на оптопары забил.

Ой, ещё вопрос. Сколько Вам стоили Ваши шаговики? Я всё смотрю на цены готовых станков, и проскальзывает желание составить им конкуренцию. Схема может и простая, но с ошибкой нарисована. Могу себе представить, как будут греться транзисторы в работе, конечно если исправить ошибку…. Поставь современные полевики вместо этого совкового убожества. Больших скоростей с этой схемой не получишь — нет динамического управления, а при высоком напряжении яйца будешь жарить на моторах. Эта же схема начального уровня.

Она вполне имеет право на жизнь, особенно если движки не ставить амперные. Ну, поставят радиаторы побольше! Есть даже микросхема L с двумя мостами на биполярниках — я как раз первые драйвера для шаговиков на ней собирал. Да — яичницу пожарить реально можно. Я сам только относительно недавно начал с MOSFET-ами играться, а до этого даже боялся к ним притрагиваться — внушили в детстве на кружке радиотехники, что полевики выбивает от любого чиха и паять их можно только ваттным паяльником, привязав себя заземлением к батарее и надев шапочку из фольги.

Теперь-то, конечно, полевики уже не те…. Хы, по порядку. Сия схема у меня не греется. Транзистор всего импульс отправляет шаговику, потом отдыхает до следующего. Винтовая передача такой подход позволяет использовать.

Как и автор только недавно попробовал полевики. Разница конечно ощутима — проще управляются, нет гемора с подбором резисторов, мощность выше. Но вот последняя моя схема h-моста получилась не идеальной. Работает, но мощность утекает, транзисторы сильно греются, движок постоянного тока вращает слабее чем хотелось. Такое впечатление, что во время работы через выключенное плечо протекает ток. Всерьёз разбираться в чём дело я пока не лез, но если кто-то сходу скажет в чём проблема, это будет замечательно.

Просто они у меня там все удобно лежат, оттуда и копирую. Всерьез разбираться нужно только с осциллографом. Там сразу все видно — где полевик недооткрылся, где выбросы высоковольтные от индуктивности мотора идут. И еще, многое зависит от управляющей программы. Она должна обеспечивать dead-time, иначе полевики могут грется и даже вылетать от сквозных токов — когда они оба сразу открыты.

Это нужно программно исключать. Блин, осцилограф я лет 10 назад разобрал. Попробую схемы со звуковой платой компьютера. В принципе самопальный АЦП где-то валялся…. В общем спасибо. С последним Вашим тезисом по-проще. Движок постоянного тока, время работы измеряется цельными секундами, поэтому проблема не актуальна.

Да, пацыки, далёкие вы походу от электроники. А посиму посоветую готовую, рабочую схему брать , простую для самостоятельного изготовления. Кстати, а может и нет, ничего хорошего в подобной простоте не нахожу. Не подумайте, что я ругаю ваши идеи — грабли — вещь распространенная, хочу вас от них уберечь.

Блин, ну ты злобный какой-то. Ну я её сначала так на вскидку начертил, потом спаял, а уже месяц спустя, потеряв первый чертёж нарисовал по памяти особо не вдумываясь. И таки он работает. Это он собранный. И не греется он, ещё раз объясняю, потому что отрабатывает только импульс на 0. Другое дело что движки у меня не особо мощные, со старого принтера.

Как запитать шаговый двигатель простейшим способом?

Его схема обмоток выглядит примерно так: Очень похоже на схему обычного асинхронного двигателя. Для запуска понадобится:. Замыкаем обмотки последовательно. Середину проводов скручиваем и запаиваем. Подключаем конденсатор одним выводом к середине обмоток, а вторым выводом в источнику питания на любой выход. Фактически конденсатор будет параллелен одной из обмоток.

Как запустить шаговый двигатель без электроники

А разве с коллектора VT1 на корпус не нужен резистор для надёжного открытия VT4 при нуле на входе канала? VT4 открывается при единице не входе канала. Я думаю что если поставить такой резистор то это может помешать открытию VT3 так как часть тока будет идти через этот резистор и в базу VT3 попадёт меньше а если сделать сопротивление этого резистора слишком большим то это большого вклада в открытие VT4 не внесёт так как через VT1 ток будет больше. Но если честно то я не знаю какие эффекты насколько будут проявляться так как не рассчитывал всё подробно м. Не желательно так как искрить переключатели будут. Как “крутить” шаговый двигатель без микроконтроллера. Схема простого контроллера шагового двигателя приведена на рисунке:.

Как подключить шаговый двигатель без контроллера

Создавая станок с ЧПУ своими руками , большинство на начальном этапе останавливается на выборе покупного чаще всего — китайского контроллера для шаговых двигателей, потому как это экономит время. Но уже после того, как станок готов и запущен, начинает закрадываться ощущение, что что-то не то… Чего-то не хватает или что-то сделано не правильно, или не доделано… Появляется некоторое недовольство, вопросы, связанные с точностью станка с ЧПУ. И так действительно происходит! Это же справедливо и для основы основ станка с ЧПУ — механизма линейного перемещения и электроники управления, а именно — контроллера шагового двигателя.

Как запустить шаговый двигатель?

У любого радиолюбителя часто скапливается не мало различной оргтехники, которая вышла из строя. Выбрасывать я её ни кто не решается, так как из ее внутренностей можно сделать что ни будь полезное или выпаять некоторые детали. К примеру: шаговый двигатель , который так распространен, обычно используется любителями самоделок как мини генератор для фонарика или для чего то ещё. Но я практически никогда не видел, чтобы его использовали именно как двигатель для преобразования электрической энергии в механическую. Это и понятно: для управления шаговым двигателем нужна электроника и его просто так к напряжению не подключишь. Но оказывается что данное мнение является ошибочным.

Как работает шаговый электродвигатель?

Замена подушки двигателя Ауди А6 С5 — пошаговая инструкция Опоры мотора, еще именуемые подушками, защищают элементы мотора от повреждения, на протяжении движения автомобиля. Главное предназначение опор мотора — защищать его от тряски и толчков в свое время езды по неровной поверхности. Естественно, продляется срок службы мотора, а езда в автомобил. CD румы бывают разные и моторы в них тоже. У многих имеются двигатели от жёстких дисков и все задавались вопросом как же его подключить? Большинство ошибочно думают, что в жёстких дисках применяются шаговые двигатели, но это не так. Принцип работы и управление шаговым двигателем с и без Также для контроля работы устройства используется драйвер шагового двигателя.

Шаговые двигатели применяются сегодня во многих промышленных сферах. Двигатели данного типа отличаются тем, что позволяют добиться высокой точности позиционирования рабочего органа, по сравнению с другими типами двигателей. Очевидно, что для работы шагового двигателя требуется точное автоматическое управление.

Перед подключением Nema 17, за плечами был определенный опыт работы с шаговиком 24byj48 даташит. Управлялся он и с помощью Arduino, и с помощью Raspberry pi, проблем не возникало. Основная прелесть этого двигателя – цена около 3 долларов в Китае. Причем, за эту сумму вы приобретаете двигатель с драйвером в комплекте. Согласитесь, такое можно даже и спалить, не особо сожалея о содеянном.

Программа подает команды для управления шаговыми двигателями через Com порт персонального компьютера или USB интерфейс RS Программа может управлять одним, двумя или тремя шаговыми двигателями, подключенными к контроллеру SMC-3 или одним шаговым двигателем, подключенным к блоку SMSD Имеется возможность сохранять исполняемые программы на ПК в отдельные файлы и загружать готовые файлы в программу. Программа имеет простой графический интерфейс, ориентированный на неподготовленного пользователя. При запуске программы все настойки передачи по COM-порту подставляются автоматически, остается только выбрать номер порта, к которому подключен контроллер или блок. Для справки все параметры открытого порта указываются внизу окна программы.

Мы принимаем формат Sprint-Layout 6! Экспорт в Gerber из Sprint-Layout 6. Попробуйте вот по такой схеме, только ёмкость конденсатора придётся подобрать под конкретный двигатель.

Шаговый двигатель своими руками, принцип работы, схема подключения

Для работы любого электрического прибора, необходим специальный приводной механизм. Шаговый двигатель, является одним из таких устройств. Сегодня есть большой выбор разнообразных электродвигателей, разделяющихся по типу и по схеме драйвера, которым управляет контроллер.

Что такое шаговый двигатель?

Шаговый двигатель — это синхронное электромеханическое устройство, которое передает сигнал управления в механическое движения ротора. Вращение происходит шагами, которые фиксируются в определенном положении.

Принцип работы шагового двигателя

При прикладывании напряжения к клеммам, щетки электродвигателя запускаются и начинают беспрерывно вращаться. Движок холостого хода обладает особым свойством, это превращение входящих импульсов прямоугольной направленности в заранее установленное положение приложенного ведущего вала.

Вал сдвигается под фиксированным углом с каждым импульсом. Если вокруг центрального куска железа зубчатой формы расположены несколько зубчатых электромагнитов, то устройства с таким редуктором достаточно эффективны. Микроконтроллер возбуждает электромагниты. Один зубчатый электромагнит под воздействием энергии притягивает зубья зубчатого колеса к своей поверхности, таким образом, вал двигателя делает поворот. Когда зубья выровнены по отношению к электромагниту, они немного смещаются к соседней магнитной детали.

Чтобы шестеренка начала вращение и выровнялась с предыдущим колесом, первый электромагнит отключается, а следующий включается. Затем весь процесс повторяется столько раз, сколько необходимо. Такое вращение называют постоянным шагом. Подсчитав количество шагов при полном обороте двигателя, определяется скорость его вращения.

Модели шаговых двигателей

Шаговые двигатели по конструкции ротора делятся на три типа: реактивный, с постоянными магнитами и гибридный.

  1. В настоящее время синхронные реактивные двигатели применяются редко. Их используют, когда нужен небольшой момент и слишком большой угол поворота шага. Ротор изготовлен из магнитомягкого материала с отчетливыми полюсами, имеет большой угол шага, при отсутствии тока нет фиксирующего момента. Это самый простой и дешевый двигатель. Статор состоит из шести полюсов и трех фаз, а ротор имеет четыре полюса. При этом шаг устройства составляет 30 градусов. Вращающееся магнитное поле создается последовательным включением фаз статора. Ротор за один шаг поворачивается на угол меньше угла статора, так происходит из-за меньшего количества полюсов.
  2. Двигатель с постоянными магнитами состоит из ротора на постоянных магнитах и статора с двумя фазами. В отличие от реактивных устройств, у двигателей на постоянных магнитах после снятия управляющего сигнала ротор фиксируется. Так, происходит благодаря большим вращающим моментам. Так как процесс изготовления ротора сопровождается большими технологическими трудностями (большое число полюсов+постоянные магниты), получается большой угловой шаг до 90 градусов. Это является их единственным недостатком. При работе с однополярной схемой управления обмотки в центре могут быть с ответвлением. Обмотки без центрального ответвления питаются через двуполярную схему управления. Исходя из этого устройство шагового двигателя разделяется на два типа по виду обмоток, униполярные и биполярные.

Униполярный. Изменять расположение магнитных полюсов можно, не меняя при этом направленность тока. Достаточно включить отдельно каждую фазу обмотки. Устройство состоит из одной обмотки на фазу с расположенным в центре ответвлением.

Биполярный . У таких двигателей на фазу приходится одна обмотка, нет общего вывода, а есть два — на фазу. Благодаря этому биполярные устройства обладают наибольшей мощностью, чем униполярные. Для изменения магнитных полярностей полюсов, в обмотке изменяют направления тока.

Гибридный двигатель

Чтобы уменьшить угол шага, был разработан гибридный шаговый двигатель. В свою конструкцию, он включает лучшие свойства двигателя с постоянными магнитами и реактивного двигателя. Ротор представлен в виде намагниченного вдоль продольной оси цилиндрического магнита. Статор состоит из двух или четырех фаз, которые размещены между парами явно выраженных полюсов.

Как запустить шаговый двигатель, его управление

Работа по подключению и управлению шагового двигателя будет зависеть от того, каким образом вы хотите запустить устройство и сколько проводов находится на приводе. Шаговые электродвигатели могут иметь от 4 до 8 проводов, поэтому для их подключения используют определенную схему.

  • С четырьмя проводами. Каждая фазная обмотка имеет по два провода. Чтобы подсоединить драйвер пошагово, нужно найти парные провода с непрерывной связью между ними. Такой двигатель используется только с биполярным прибором.
  • С пятью проводами. Центральные клеммы мотора внутри объединяются в сплошной кабель и выведены к одному проводу. Отделить обмотки друг от друга невозможно, так как появится много разрывов. Выйти из положения можно, если установить где находится центр провода и попытаться соединить его с другими проводниками. Это самый эффективный и безопасный режим. Затем устройство подключается и проверяется на работоспособность.
  • С шестью проводами. Каждая обмотка имеет несколько проводов и центр-кран. Для разделения провода применяют измерительный прибор. Мотор можно подключать к однополярному и биполярному устройству. При подключении к однополярному устройству используются все провода. Для биполярного устройства один конец провода и один центральный кран каждой обмотки.

Для управления шаговым двигателем требуется контроллер. Контроллер, это схема, подающая напряжение к одной из катушек статора. Контроллер изготовлен на базе интегральной микросхемы типа ULN 2003 включающей в себя комплект составных ключей. Каждый ключ имеет на выходе защитные диоды, которые, позволяют подключать индукционные нагрузки, не требуя дополнительной защиты.

Как работает шаговый двигатель?

Устройство может работать в трех режимах:

  • Микрошаговый режим. Устройства, работающие на микрошагововом режиме, являются новейшими разработками некоторых производителей и используются в основном в микроэлектронике или на промышленных конвейерах. Специальный чип создает такое напряжение, что вал становится в положение одной сотой шага, к примеру, на 1 оборот происходит 20 тыс. перемещений. Драйвер может создавать более 50 тысяч циклов управляющих напряжений на 1 оборот.
  • Половинный режим. Благодаря тому, что в режиме половинного шага уровень вибраций сокращается, такие устройства часто используются в промышленности. После того как одна фаза активируется, она замирает в таком положении до тех пор, пока не включится следующая. Получается промежуточное положение и на зуб воздействуют одновременно два полюса. Когда первая фаза отключается, ротор продвигается вперед на полшага.
  • Полный режим. Управляющее напряжение по очереди передается по всем фазам и получается полный шаг (на 1 оборот 200 перемещений).

Техническая характеристика шагового двигателя

В области электротехники и механики шаговый электродвигатель считается сложным устройством, которое включает в себя множество механических и электрических возможностей. На практике применяются следующие технические характеристики:

  1. Номинальный ток и напряжение. Максимально допустимый ток указан в механических параметрах электродвигателя. Номинальный ток, является главным электрическим параметром, при котором двигатель может работать сколько угодно времени. Номинальное напряжение указывают редко, его вычисляют по закону Ома. Оно показывает постоянное максимальное напряжение на обмотке двигателя, когда он находится в статическом режиме.
  2. Сопротивление фазы. Параметр показывает какое максимальное напряжение можно подавать на обмотку фазы.
  3. Индуктивность фазы. Насколько быстро будет увеличиваться ток в обмотке показывает этот параметр. Чтобы ток быстрее увеличивался при переключении фаз на высоких частотах, напряжение приходится делать больше.
  4. Число полных шагов за 1 оборот. Параметр показывает насколько электродвигатель точен, его плавность и допустимую способность.
  5. Вращающий момент. Механические данные показывают частоту вращения, которая зависит от момента вращения. Параметр указывает максимальное время вращения электродвигателя.
  6. Удерживающая фаза. Эта фаза показывает момент вращения при остановленном устройстве. Две фазы устройства должны быть запитаны номинальным током.
  7. Момент ступора. Во время отсутствия напряжения питания, он необходим для того, чтобы вал электродвигателя можно было провернуть.
  8. Время энерции ротора. Означает как быстро разгоняется двигатель. Чем показатель меньше, тем скорость разгона больше.
  9. Пробивное напряжение. Параметр относится к разделу электробезопасности и показывает наименьшее напряжение, пробивающее изоляцию между корпусом и обмотками устройства.

Читайте также:  Простейшая схема автоматического управления уровнем воды
Ссылка на основную публикацию