Мощный блок питания из трансформатора микроволновки своими руками

Мощный блок питания из трансформатора микроволновки своими руками

Идея использовать для блока питания (БП) мощного лапового PA силовых трансформаторов от бытовых СВЧ-печей (СВЧТ) давно имеет хождение среди радиолюбителей.

С первого взгляда она кажется весьма привлекательной. Ведь СВЧТ отдает мощность 1. 1,5 kW (при мощности печек 650. 900 W, соответственно) и имеет переменное напряжение на вторичной обмотке 1800. 2300 V (в зависимости от типа магнетрона).

Если к этому добавить малые габариты и невысокую стоимость СВЧТ (из сгоревших печей их можно купить по цене лома, ибо надежность СВЧТ высока и в вышедшей из строя печи СВЧТ практически всегда будет исправен), хорошее качество изготовления и заливки, то кажется что СВЧТ хорошо подойдет для PA с выходной мощностью 600. 900W (при одном СВЧТ) или 1,2. 1,8 kW при паре СВЧТ.

Такой взгляд поддерживается редкими описаниями удачно работающих РА с блоком питания на СВЧТ (например, РА VK4YE).

Описаний же тех, кто попробовал, но ничего путного не получилпочти нет. Но это не значит, что случаи неудач редки. Отнюдь. Просто в таком случае хвастаться нечем и статью писать тоже вроде как не о чем. К примеру, тот же VK4YE в одном из форумов отмечал, что из четырех таких БП два у него сгорели в первый же день, третий – через пару месяцев, и лишь четвертый работает 6 лет.

Чтобы двигаться дальше разберемся сперва, как устроен СВЧТ.

Кардинальное различие между СВЧТ и трансформатором БП PA, заключается в том, что первый из них работает на максимальной мощности, но не более 30 минут (за это время любую курицу можно засушить до состояния подошвы) и затем выключается. В РА же трансформатор обязан работать часами и сутками. Не всегда на полной мощности (в режиме приема, например), но всегда длительно.

Таким образом, СВЧТ изначально спроектирован, чтобы при минимальных габаритах и цене отдавать максимальную мощность, но (увы!) лишь недолго.

Поэтому железо СВЧТ работает в насыщении. Это означает очень высокий ток холостого хода первичной обмотки. Типично 2. 4 А. Это слишком много для длительной работы в дежурном режиме. При таком токе трансформатор через 40..60 минут будет недопустимо перегреваться даже при отсутствии нагрузки.

Если каким-то образом (добавление витков сетевой обмотки или понижением напряжения на ней) снизить этот ток до приемлемых величин (для обычных трансформаторов считается 1 mA на каждый ватт выходной мощности, т.е. в нашем случае до 1 А примерно), то вместе с уменьшением магнитного потока в сердечнике упадет и мощность трансформатора.

Исходно, магнитный поток в сердечнике СВЧТ и сделан столь большим (с заходом далеко в область насыщения сердечника), чтобы при малых габаритах передать большую мощность. Уменьшение же этого потока (домоткой сетевой обмотки или снижением напряжения на ней) соответственно снизит и габаритную мощность. В несколько раз.

Выглядеть это будет так, что трансформатор “не держит” нагрузку и напряжение на вторичной обмотке “проседает” почти вдвое уже при нагрузке в 300. 400 Вт.

Но в конце концов и 300..400 Вт с одного трансформатора это неплохо. Можем ли мы использовать СВЧТ со сниженным током холостого хода (с домотанной сетевой обмоткой или с пониженным напряжением на ней) в длительном дежурном режиме? Оказывается, тоже нет.

В погоне за экономичностью и технологичностью пластины СВЧТ скреплены вместе сваркой. Т.е. электрически они соединены между собой, отрывая прямую дорогу для вихревых токов. В обычном трансформаторе сердечник выполняется из набора пластин, изолированных (слоем окисла) друг от друга. Делается это как раз для того, чтобы разорвать цепь протекания вихревых токов, и тем самым заметно снизить потери в сердечнике и его нагрев. А в СВЧТ эти пластины заботливо соединены сваркой друг с другом, да еще в нескольких местах.

Поэтому обычная норма (1 mA на 1 W выходной мощности) холостого тока первичной обмотки для сваренных сердечников СВЧТ не годится. Даже при токах холостого хода 400..500 мА сердечник СВЧТ через 40. 60 минут раскаляется до 70 0 . 80 0 .

В принципе, любителями описаны случаи, когда путем полной разборки сердечника СВЧТ (удалением сварки), разделения пластин и покрытия их лаком и последующей сборки СВЧТ (на стягивающих винтах) удалось получить приемлемый нагрев сердечника при токе холостого хода 1 А. Но трудоемкость такой переделки столь высока, что я не рискнул бы ее рекомендовать (разве что в самом крайнем случаем – когда трансформатор взять больше негде, иначе как от СВЧ печки).

Поэтому вернемся к нашим обычным (сваренным, не переделанным СВЧТ).

Приемлемый нагрев (40..45 0 на холостом ходу через час) сердечника СВЧТ достигается лишь при холостых токах менее 200 mA. Но для этого требуется снижать на первичной обмотке напряжение практически вдвое. Кажется заманчивым включить два одинаковых СВЧТ первичными обмотками последовательно (тогда на каждой будет по 110 V).

Требуемый холостой ток и нагрев сердечника при этом действительно достигаются. Но ценой значительного падения мощности (сильная “просадка” напряжения вторичной обмотки, даже при относительно небольшой мощности). Поэтому на практике такой вариант не годится.

Малая “просадка” выходного напряжения в СВЧТ достигается только при паспортном (или близком к нему) напряжении первичной обмотки.

Вывод 1: СВЧТ необходимо использовать при номинальном (220 V) напряжении первичной обмотки. Его заметное снижение резко ухудшает нагрузочную способность вторичной обмотки.

Вывод 2, вытекающий из вывода 1: сердечник СВЧТ будет греться. Сильно греться, даже на холостом ходу. И с этим обязательно надо что-то делать.

Что именно? Возможны лишь два варианта.

1. Включить СВЧТ в сеть постоянно и хорошенько обдувать его. Например, заключив в воздуховод и отдельным вентилятором. Конечно СВЧТ греется. Но при хорошем обдуве можно удержать его температуру в разумных пределах. Обычно СВЧТ залит чем-то вроде эпоксидки, каркасы пропитаны ею же. Поэтому гореть и плавиться в СВЧТ особенно нечему, и даже при температуре 50. 60 0 он может длительно работать.

Кроме постоянного шума вентилятора, этот вариант имеет еще и тот недостаток, что 100. 150 W из сети потребляются постоянно и расходуются на нагрев сердечника СВЧТ. Мало того, что эту мощность, рассеиваемую в тепло в сердечнике, надо отводить обдувом, так еще за нее придется и платить. За месяц работы такого СВЧТ даже только в дежурном режиме “нагорит” 100 кВт·ч. А если в БП два СВЧТ (что часто требуется), то все 200 кВт·ч.

2. Второй вариант не годится любителям долго CQ-лять и делать 500 QSO в сутки. В этом варианте СВЧТ включен в сеть не постоянно, а через нормально разомкнутые контакты мощного реле, управляемого педалью “RX/TX”. Если отношение времени приема к времени передачи превышает 3 (типично для средней работы), то СВЧТ успевает приемлемо охладиться во время приема и не требует дополнительного обдува.

Самым крупным недостатком этого решения является невозможность QSK, т.е. быстрого переключения на передачу. Ведь при включении на передачу подается сеть на СВЧТ и происходит заряд конденсатора фильтра питания. Это требует времени – до десятых долей секунды. Кроме того, броски тока при зарядке конденсатора могут быть велики, а применение всякого рода стартовых, токоограничивающих цепей удлиняет время включения на передачу.

В принципе, усложнив управление, можно сделать и QSK. Но лишь в пределах тех 30 минут, которые может без перегрева работать СВЧТ. Потом потребуется обязательная пауза на охлаждение (с полным отключением СВЧТ от сети).

Других вариантов нет. Имеющиеся же два довольно неудобны. Если эти неудобства для вашего случая слишком велики, то выбросите из головы идею применения СВЧТ в РА и займитесь поисками обычных трансформаторов.

Если же какой-то из вышеописанных двух вариантов вас устраивает, можно приступать к выбору схемы. Он, откровенно говоря, невелик. И зависит не от вашего желания, а от конструкции каркаса высоковольтной обмотки СВЧТ.

Если изоляция каркаса тонкая (обычно это тонкий картон, пропитанный эпоксидкой), то выбора нет. Схема может быть только такой, как показано на рис. 1:


Рис. 1

Дело в том, что в “родном” включении СВЧТ один из выводов высоковольтной обмотки (внутренний) сидит прямо на корпусе (часто это сделано прямо на СВЧТ). Поэтому там нет никакого смысла очень уж качественно изолировать первый слой этой обмотки от сердечника – все равно напряжение там низкое.

Если же мы попытаемся нагрузить вторичную обмотку СВЧТ на диодный мост, то ситуация изменится кардинально. Теперь высокое (полное выходное) напряжение относительно корпуса поочередно будет оказываться на обоих выводах вторичной обмотки. В том числе – и на внутреннем. Поэтому, если качество изоляции начала обмотки от сердечника вызывает сомнения (выдержит ли она 2,5. 3,3 кВ?), то схема выпрямителя может быть только такой, как показано на рис. 1 – внутренние выводы обеих высоковольтных обмоток соединены с корпусом. Конечно, оба СВЧТ должны быть одинаковыми.

Если же каркас высоковольтной обмотки выполнен из толстого и качественного диэлектрика, то можно рискнуть и использовать обычную мостовую схему выпрямителя (рис. 2). Если мощности одного СВЧТ не хватает, можно включить параллельно два одинаковых СВЧТ (рис. 3).


Рис. 2. Рис. 3.

Такая схема более предпочтительна с точки зрения получения максимальной мощности, чем схема рис. 1.

Дело в том, что схема рис. 1 хотя и является двухполупериодной, но имеет одну неприятную особенность. В отличие от такой двухполупериодной схемы, в которой выходная обмотка (с отводом от середины) намотана на одном сердечнике, в схеме рисунка 1 “половинки” вторичной обмотки намотаны на разных сердечниках. Поэтому имеется изрядное подмагничивание каждого из сердечников постоянным током.

В обычной схеме (с одной обмоткой с отводом на одном сердечнике) этого не происходит – подмагничивание в разные полупериоды имеет разные знаки и потому взаимно компенсируется. В схеме же рис. 1, увы, подмагничивание сердечников есть (в каждый полупериод – своего, и компенсации не происходит, потому что сердечников два), и оно снижает (раза в полтора) максимальную мощность.

Таким образом, схема рис. 2 дает мощность, равную мощности применяемого СВЧТ (выходная мощность той печки, где стоял СВЧТ, умноженная на 1,4..1,6). Схема рис 1 – в полтора раза больше. Схема рис. 3 – в два раза больше.

Ну что, теперь-то можно приступать к изготовлению БП? Еще рано. Сперва надо переделать СВЧТ.

Во-первых, неплохо бы удалить накальную обмотку магнетрона (несколько витков толстым проводом в хорошей изоляции поверх высоковольтной обмотки). Собственно наличие этой обмотки ничему не мешает и ее можно оставить (обрезав до минимума её выводы). Но уж больно там хороший провод: высоковольтный и не боящийся высокой температуры. Такой очень пригодится при разводке анодных цепей РА, поэтому постарайтесь все-таки смотать накальную обмотку. Но особо не усердствуйте. Если не очень получается и есть риск повредить высоковольтную обмотку, то лучше оставить все как есть.

Читайте также:  Приставка-регулятор к блоку питания

Во-вторых,из применяемых СВЧТ надо выбить магнитные шунты. Их два в каждом СВЧТ. Магнитные шунты – это пачки металлических пластин, вставленных в окна сердечника между сетевой и высоковольтной обмотками. Шунты показаны желтым цветом на рис. 4.


Рис. 4.

Исходное назначение шунтов – замкнуть на себя часть магнитного потока и тем ограничить максимальный ток вторичной обмотки. Сделано это для того, чтобы при не допустить “разгон” магнетрона на большую мощность, и перегрузки СВЧТ.

Но в РА от КЗ защищает анодный предохранитель (ведь он же есть у вас?). А ограничение тока вторичной обмотки нам совершенно ни к чему: и мощность снижает и “просадку” под нагрузкой повышает. Поэтому магнитные шунты должны быть удалены.

Это сделать непросто (они обычно плотно вставлены и хорошо залиты), но весьма желательно. В самом крайнем случае шунты можно и оставить, но это процентов на 20..30 снизит отдаваемую мощность и повысит “просадку” напряжения под полной нагрузкой.

Выбить шунты проще всего подходящим по размеру прямоугольным стальным бруском, положив СВЧТ на разведенные губки тисков. Сложность еще и в том, что железо шунтов мягкое, и при сильных ударах торец шунтов расклепывается, и если не полностью заклинивается в окне, то идет очень туго.Можно также попробовать, уперев в губки тисков упомянутый брусок и противоположную стенку сердечника СВЧТ, выдавить шунты сводя губки тисков. Или хотя бы стронуть их с места, а уж дальше выбивать.

В общем, процедура удаления шунтов столь же непроста, сколь и необходима.

Вот теперь вы можете приступать к изготовлению БП. В завершение еще несколько нюансов.

1. Даже если вы применяет схему рис. 1, то все равно желательно на СВЧТ оторвать от земли внутренний вывод высоковольтной обмотки, и закрепить его на дополнительном опорном изоляторе (качество последнего может быть невысоким). Точку соединения высоковольтных обмоток на рис. 1 лучше соединить не прямо с корпусом, а через резистор 0,5. 1 Ом. И по падению напряжения на этом резисторе измерять ток нагрузки, т.е. анодный ток.

2. Если получаемое после выпрямления напряжение слишком велико для используемой лампы, то можно снизить его на 10. 15%. Для этого надо соответственно домотать сетевую обмотку, используя место, где ранее были магнитные шунты. Обычно в СВЧТ 1,5 витка на вольт, поэтому надо доматывать 30. 40 витков. Это непросто, но вполне осуществимо. Надо позаботиться о хорошей изоляции, способной выдерживать высокую температуру, ибо в любом случае в СВЧТ довольно жарко.

3. Правильность фазировки в схемах 1 и 3 удобно проверять, временно подав на первичные обмотки СВЧТ 5. 6 V переменного напряжения от отдельного трансформатора. Но даже в этом случае соблюдайте осторожность: на высоковольтной обмотке будет около 60 V, а в схеме рис. 1 – около 120 V (между выводами, идущими на диоды). Это конечно не 2. 3 kV, но крепко дернуть (а при неудачном стечении обстоятельств даже и убить) вполне может.

4. О диодах. В схемах рисунков 2 и 3 обратное напряжение на диодах равно выходному, а в схеме рис.1 – вдвое превышает его.

Диоды (вернее сборки) можно применять от СВЧ печей. По напряжению они имеют большой, запас (его хватает даже для схемы рис. 1), чего к сожалению, не скажешь о токе. Поэтому лучше сделать сборку из обычных выпрямительных диодов, зашунтировав каждый выравнивающими конденсаторами (0,01. 0,033 мкФ) и резисторами (300. 600 кОм 2 W). Но это довольно муторно: на каждый диод по резистору с конденсатором. Ведь диодов надо много и получается довольно большой блок.

Наилучшим решением является применение высоковольтных выпрямительных диодов, которые при небольшом превышении допустимого обратного напряжения переходят в режим стабилитрона.

При последовательном включении нескольких таких диодов нет необходимости в выравнивающих резисторах и конденсаторах. Если в силу каких-то причин на цепочке диодов на одном из них чрезмерно повысится обратное напряжение, то он перейдет в режим стабилитрона и сбросит излишнее напряжение на остальные диоды цепочки.

Я бы рекомендовал диоды 1N5408. Их допустимое обратное напряжение 1 kV, при напряжении 1,2 kV они переходят в режим стабилитрона. Ток 3 A (пиковый 200). И при всем том, розничная цена их – 15. 20 центов. Учитывая экономию на выравнивающих резисторах и конденсаторах – почти даром.

4. Конденсатор фильтра. Если у вас набор электролитических конденсаторов, то зачем вы читали эту статью? Зачем вам силовой трансформатор? Докупите еще таких же конденсаторов и сделайте бестрансформаторный РА. Если применяются электролитические конденсаторы, то силовой трансформатор – совершенно ненужная деталь.

Он нужен, если применяется один высоковольтный пленочный конденсатор, который (в отличие от электролитических) может работать без замены многие десятилетия. Но зато к нему нужен повышающий силовой трансформатор.

Емкость конденсатора фильтра выбирается исходя из тока нагрузки IН и допустимой амплитуды пульсаций выпрямленного напряжения ЕПУЛЬС, по следующей формуле:

Принято считать, что для РА с общей сеткой ЕПУЛЬС может быть до 10% от анодного напряжения, а для схем с общим катодом – до 5%.

Следует также учесть, что на величину ЕПУЛЬС понижается выходное напряжение выпрямителя под нагрузкой. Причем это падение идет дополнительно к снижению выходного напряжения из-за потерь на обмотках и диодах, а также из-за ограничения мощности сердечником трансформатора.

Пример. Схема рис. 1. СВЧТ (от печек с мощностью 800 W) имеют 2 kV переменного напряжения. На холостом ходу выходное напряжение будет 2,8 kV (просто в 1,4 раза больше). Максимальный ток нагрузки 0,8 А. Мы можем допустить максимальную амплитуду пульсаций 100 V. По приведенной формуле получаем, что конденсатор должен быть не менее 40 мкФ. Падение напряжения источника под полной нагрузкой сложится из:

– ЕПУЛЬС, которая, как мы посчитали-задали составит 100 V.

– Падения на активном сопротивлении вторичных обмоток и диодах (в каждом плече использована цепочка из 8 диодов 1N5408) – около 100 V.

– Падения напряжения из-за потерь в сердечнике 100 V.

Т.е. под током 0,8 А общее падение напряжение будет 300 V, выходное напряжение будет составлять 2,5 kV с пульсациями 100 V.

При наладке БП не забывайте разряжать конденсаторы. Хотя бы так. Убойное напряжение на пленочных конденсаторах без цепей разряда может сохраняться сутками.

Мощный блок питания

Была у меня хорошая микроволновка мощностью 700Вт. Но в результате неправильной эксплуатации(на тарелке было металлическое напыление) вышел из строя магнетрон. Посмотрев цены на новые магнетроны, понял что ремонтировать смысла нет.

В интернете полно информации о переделке этих трансформаторов в точечную сварку и я захотел себе такой полезный инструмент, тем более что переделка не составит особого труда. Плюс блок питание с дополнительной доработкой можно применять и для других целей. В сегодняшней статье я расскажу о самом блоке питания

В микроволновке стоит трансформатор на 700Вт. Эти трансформаторы называются МОТ-ы, они имеют высокий ток холостого хода, около 1А(220В*1А=220Вт), а один виток обмотки примерно равен 1В. Вторичная обмотка трансформатора, она из тонкого провода, имеет напряжение 2000В, поэтому ее придется удалить.

Сделать это можно и без разборки трансформатора, с помощью ножовки по металлу, дрели со сверлом 9мм, тонкого зубила и молотка. С двух сторон обмотка спиливается ножовкой, потом дрелью высверливаются в обмотке дырки и остатки выбиваются зубилом и молотком. Между двух обмоток установлены наборы из металлических пластин, я их удаляю для максимального отбора мощности. Во время разборки надо быть предельно осторожным, что бы не повредить первичную обмотку.

Трансформатор подготовлен для намотки, теперь нужен провод новой вторички. Провод должен иметь большое сечение не менее 32кв мм. И такой провод стоит довольно дорого, поэтому я его буду изготавливать сам. Для изготовления провода длиной примерно 1,3м взял обмотку трансформатора 270Вт с сечением провода 0,6мм и сложил его 60раз. У меня сечение получилось где-то 36 кв мм. Теперь этот провод обматываю тряпочной изолентой и продеваю через железо трансформатора, делая полтора витка. Концы провода очищаю и одеваю самодельные оконечники из латунной трубки. Один край у трубки расплющен и сделано отверстие под болты М8, а другой край заполняю канифолью-припоем и вставляю в него провод. Следом наконечники разогреваю паяльной лампой пока припой не расплавится.

Перемотанный МОТ

Перемотанный МОТ с оконечниками в корпусе

Не удержавшись решил испробовать трансформатор и между оконечников зажимаю 75мм гвоздь. Гвоздь расплавился за считанные секунды. А вот гвоздь 100мм так и не расплавил

Трансформатор испробован и пора приняться за блок управления и корпус.
Управление трансформатором должно иметь следующий функционал:
1. Дистанционное управление кнопкой. Трансформатор работает пока кнопка нажата
2. Дистанционное управление кнопкой с ограничением по времени. Регулировка времени включения трансформатора потенциометром, кнопку нажал и трансформатор работает от 0,1с до 2с
3. Постоянно включенный блок питания без дистанционного управления

Схема мощного блока питания 420А 1,5В

По схеме видим что питание на трансформатор приходит через реле 220В 15А, взятое с той же микроволновки. Это реле запитывается через реле 12В. Второе реле необходимо для безопасности, так как у блока питания есть дистанционное управление со сменным пультом и поэтому пришлось все управляющие цепи питать от отдельного трансформатора 12В.
На входе блока питания установлен автомат на 10А на всякий случай. Переключатель режимов использовал многопозиционный от осциллографа с1-20.

Блок опорного напряжения и коммутируемые реле

Таймер пока не устанавливал, пока нужды в нем нет, да и время нет. Так же к блоку питания планирую в будуйщем добавить тиристорный регулятор мощности

Ну и пару слов о корпусе. Переднюю и заднюю стенку изготовил из крышки от осциллографа С1-20, распиленную пополам.

На задней стенке вырезал прямоугольное отверстие для установки решетки с вентилятором от той же микроволновки. Вентилятор запитываемый вместе с трансформатором МОТ.
Вывел провод питания 2,5кв мм с заземленый на корпус

Вентилятор охлаждения от микроволновки

Задняя стенка мощного блока питания

На передней стенке сделал отверстия для автомата, регуляторов переключателей, разъема подключения пульта и отверстия для вывода клемм . Для изоляции клемм от корпуса использовал самодельные подкладки и шайбы из текстолита от старых план

Передняя стенка мощного блока питания

Подошва изготовлена из куска фанеры, на которой установлен трансформатор мот, коммутирующий реле и трансформатор 12В. Размер подошвы подобран так, что бы в будущем можно было установить еще один трансформатор от микроволновки

Ну и крышку я вырезал из оцинкованного листа. Все части корпуса стянул саморезами по дереву и металлу.

Пультом является кнопка с проводом с припаянным разъемом типа тюльпан
Пульт-кнопка дистанционного управления

Ну на этом все. Рассказал о конструкции блока питания, в следующих статьях буду рассказывать какие примочки можно подключать к этому блоку питания. Сами увидите на сколько это устройство получится много функциональное. Что бы не пропустить новые материалы по этому блоку питания, подписывайтесь на обновления: канал RSS, группа ВКонтакте, Группа ОдноКлассники

Читайте также:  Как сделать простой металлоискатель на одном транзисторе и АМ приемнике

перемотка трансформатора от микроволновки в мощный ЛБП

при наличии достаточного количества обмоточного провода и энтузиазма это один из самых дешёвый способов сделать надёжный лабораторный блок питания.
1
трансформатор можно найти на авито за довольно небольшие деньги (в моём случае за 200р).
обмоточный провод возможно скопился у радиолюбителя от разного хлама, поэтому его в счёт не берём.

2
наигравшись дугой нам предстоит разобрать транс, нужно распилить сварной шов и вытащить обмотки (по возможности аккуратно, ведь провод – довольно нужная вещь)

3
далее нужно измерить размеры сердечника и сделать каркас катушки (я делал из гетинакса, можно делать из нефольгированного текстолита, но не из картона).
далее нужно начать мотать первичку. оригинальная первичка намотана алюминиевым проводом 200-250 витков; это мало для такого сердечника и поэтому он работает почти в насыщении и кпд у такого дела не велик, но т.к. микроволновки активно охлаждаются и используются не очень долго, для мота это не очень критично.
мотаем на каркас 550-600 витков (в моём случае проводом

0,3мм 555 витков)
изолировать слои удобнее всего молярной лентой.
далее наматываем 10 витков, суём в сердечник (да, он будет сильно гудеть, но это не на долго), подключаем первичку к розетке и измеряем напряжение на 10 витках (в моём случае 0,35в на виток)
далее мотаем вторичку со множеством выводов (в моём случае 6 выводов с шагом в 2 вольта, выводы на 24, 30, 36, 40, 60, 64), желательно сделать еще и отдельную высоковольтную обмотку (в моём случае 3 вывода на 145, 300в)
(не забываем про изоляцию между слоями)
что-бы плотно скрепить половинки сердечника можно их запаять, сварить или склеить (я запаял, т.к. нечего другого не было)
но еще желательно сделать стяжку для сердечника, чтоб клейпайка не развалилась.

интересная идее 100500применения МОТа..

толко вот менять первичку вряд ли стоило потеряли полровину мощности.

кстати нахрена стка отводоф выж не аналог ЛАТРА ДЕЛАЛИ?

кстати не спешите выкидывать люминевый провод обмоток он не так плох кстати боле мягок чем меть для мотки

musor: кстати не спешите выкидывать люминевый провод обмоток он не так плох кстати боле мягок чем меть для мотки

А ещё лучше продайте сюда

tetasigma: трансформатор можно найти на авито за довольно небольшие деньги

А ещё лучше и проще микроволновку на мусорке.

tetasigma: мотаем на каркас 550-600 витков (в моём случае проводом

Из всего проделанного могу похвалить , только за упорство (грубить не будем, всё остальное полная туфта.).

P.S.Сварные сердечники разбираем следующим образом. Сварной шов аккуратно спиливаем круглым напильником и все пластины разбираем. При сборке, пластины укладываем внахлёст, по классике. Ну, а если не хочется рассчитывать витки по формулам, то даю универсальную на все случаи жизни. Количество витков первичной обмотки на один вольт равно S:50, где S-площадь сечения внутреннего стержня. Количество витков для вторичной обмотки умножаем на 1,1. Ток в проводах смотрим по таблицам.

Да ерунда это. Я делал пускач на таком трансе, вторичку срубал(провод медный был на нём), шунты выбивал и мотал проводом ПВ-3. Но это для кратковременной работы. А перематывать его с распиловкой, да нафиг нужен такой геморой, других трансов полно. Ну разве что включить его наоборот, вторичку в сеть, а с первички низкое напряжение снимать. Моща небольшая будет. Только не забыть отсоединить земляной вывод вторички от железа сердечника. Шунты выбить конечно, а в дырки от них можно домотать вторички.

“musor толко вот менять первичку вряд ли стоило потеряли полровину мощности..”

эта мощность не соответствует размеру сердечника,+ кпд низкое.

jimmy: где S-площадь сечения внутреннего стержня.

Форум про радио — сайт, посвященный обсуждению электроники, компьютеров и смежных тем.

Поделки своими руками для автолюбителей

Отличная самоделка из трансформатора от микроволновки для авто

Эта самоделка предназначена для откручивания прикипевших и ржавых гаек, путём их нагрева электричеством. Всё делается быстро и просто.

Для самоделки нам потребуется трансформатор от микроволновой печи.

С неё нужно будет снять вторичную обмотку. Вторичную обмотку я срезал так, взял болгарку и аккуратно надрезал обмотку, ещё раз повторюсь, срезайте аккуратно, чтобы не зацепить первичную обмотку.

Когда срезали обмотку, остатки из неё просто выбиваются молотком и сдаются на цвет металл.

Вот теперь наш трансформатор готов к намотки другой, вторичной обмотки.

Но сначала я подсоединил провод питания к первичной обмотке, сам провод взял от старого утюга.

Вторичную обмотку нужно мотать проводом от 7 мм, у меня влезло как раз 3 витка такого провода, вот как на фото.

Сам прибор практически готов, теперь нужно сделать щипцы и контакты, которые будут зажимать и нагревать гайку или деталь.

Для этого я взял один крокодил от прикуривателя, к нему прикрепил 2 полоски из стекловолокна (в качестве изолятора), я думаю, что из фото будет всё понятно.

К полоскам прикрутил металлические пластины, а к пластинам уже болты к которым прикручиваются концы проводов. Да, забыл сказать, что болты я взял от втягивающего реле, потому что они медные.

На ручки крокодила надел термоусадку.

Ну и решил сразу делать короб для своего устройства, короб я делал из остатков дсп, да ещё и установил туда вентилятор от компьютера для охлаждения трансформатора. А от ремня грм отрезал кусок и прикрутил, получилась ручка,в итоге получился вот такой прибор.

Ну а теперь к испытанию…

Гвозди и болты, накаляются практически сразу.

Гайка М6 накаляется за 1 секунду.

М8 тоже быстро накаляется

М10 уже накаляется помедленнее.

А вот здесь я уже испытал в реальных условиях, гайка не откручивалась на впускном коллекторе.

Тут устройство справилась на «ура» и гайка легко открутилась, но и провода тоже нагрелись, но не сильно, то есть они там не поплавились, а просто нагрелись.

Конечно, если кто желает себе сделать устройство помощнее, то соответственно и провода нужно брать толще 7 мм, возьмите миллиметров 10 и я уверен, что устройство будет работать в разы мощнее, но а мне и такой мощности вполне достаточно.

Получилось отличное устройство, которое пригодится в любой мастерской и в любом гараже автолюбителя.

Популярное;

2 thoughts on “Отличная самоделка из трансформатора от микроволновки для авто”

Для того, чтобы сделать точечную сварку своими руками, понадобится: * Трансформатор от микроволновки * Медный одножильный провод, сечением, чем толще, тем лучше * Провод для сварочного аппарата 1 метр * Пару обжимных наконечников с отверстием * Два болта с гайкой М10 * Ножовка по металлу * Дрель, сверло по металлу * Кнопка от микроволновки * Провод питания от сети 220В Вот и все, что нужно для сборки нашей самоделки. Шаг первый. Для начала необходимо найти микроволновку, из которой понадобится трансформатор и кнопка, также пригодится провод питания, который к удобству имеет две клеммы с изоляцией. Разбираем трансформатор. Для данной самоделки необходимо оставить первичную обмотку, вторичную же нужно удалить.

Как сделать зарядное устройство из трансформатора микроволновки

Выдалось свободное время, и я решил не упускать момент. В ролике Вы увидите как из трансформатора микроволновой печи, своими руками можно собрать зарядное устройство, для зарядки автомобильных аккумуляторов. В зарядном устройство на базе трансформатора СВЧ печи, есть недостаток, такой как большой ток холостого хода, и заметный нагрев трансформатора. На базе МОТ, от СВЧ так-же можно собрать и пусковое устройство для автомобиля, которое поможет запустить Ваш автомобиль с севшим аккумулятором. В ролике показаны только основы расчета, в домашних условиях, без специального инструмента и измерительного оборудования. Как говориться расчет на глазок. Но если вы все-же примените трансформатор от СВЧ, в качестве зарядного устройства, снабдите его вентилятором (кулером) для охлаждения. И имейте ввиду без нагрузки ваше ЗУ будет потреблять порядка 400 Ватт мощности. #зарядноеустройствоизтрансформаторамикроволновойпечи #зарядникизтрансформатораСВЧпечи

Всем, кто желает поддержать канал с финансовой стороны. Каждому будет выражена отдельная благодарность.

Реквизиты ВебМани-Z926017009588
R912865314165

Если вы ищете надежную партнерку для своей группы или канала вот отличный вариант -https://youpartnerwsp.com/join?75824 Сам пользуюсь третий год.

Мы в Вконтакте-https://vk.com/altevaa_tv

Так-же всем любителям чтения, рекомендую мегамаркет электронных книг. -http://adset.biz/57782.

Видео Зарядное устройство из трансформатора СВЧ. The charger transformer of a microwave. канала altevaa TV

Многие автолюбители отлично знают, что для продления срока службы аккумуляторной батареи требуется периодическая ее подзарядка именно от зарядного устройства, а не от генератора автомобиля.

И чем больше срок службы аккумулятора, тем чаще его нужно заряжать, чтобы восстанавливать заряд.

Без зарядных устройств не обойтись

Для выполнения данной операции, как уже отмечено, используются зарядные устройства, работающие от сети 220 В. Таких устройств на автомобильном рынке очень много, они могут обладать различными полезными дополнительными функциями.

Однако все они выполняют одну работу – преобразуют переменное напряжение 220 В в постоянное – 13,8-14,4 В.

В некоторых моделях сила тока при зарядке регулируется вручную, но есть и модели с полностью автоматической работой.

Из всех недостатков покупных зарядных устройств можно отметить высокую их стоимость, и чем «навороченней» прибор, тем цена на него выше.

А ведь у многих под рукой есть большое количество электроприборов, составные части которых вполне могут подойти для создания самодельного зарядного устройства.

Да, самодельный прибор выглядеть будет не так презентабельно, как покупной, но ведь его задача – заряжать АКБ, а не «красоваться» на полке.

Одними из важнейших условий при создании зарядного устройства – это хоть начальное знание электротехники и радиоэлектроники, а также умение держать в руках паяльник и уметь правильно им пользоваться.

Далее рассмотрим несколько схем зарядных устройств для АКБ, которые можно создать из старых электроприборов или составных частей электроники.

ЗУ из лампового телевизора

Первой будет схема, пожалуй, самая простейшая, и справиться с ней сможет практически любой автолюбитель.

Для изготовления простейшего зарядного устройства понадобиться всего лишь две составные части – трансформатор и выпрямитель.

Главное условие, которым должно соответствовать зарядное устройство – это сила тока на выходе из прибора должна составлять 10% от емкости АКБ.

То есть, зачастую на легковых авто применяется батарея на 60 Ач, исходя из этого, на выходе из прибора сила тока должна быть на уровне 6 А. При этом напряжение 13,8-14,2 В.

Если у кого-то стоит старый ненужный ламповый советский телевизор, то лучше трансформатора, чем из него не найти.

Принципиальная схема зарядного устройства из телевизора имеет такой вид.

Зачастую на таких телевизорах устанавливался трансформатор ТС-180. Особенностью его являлось наличие двух вторичных обмоток, по 6,4 В и силой тока 4,7 А. Первичная обмотка тоже состоит из двух частей.

Вначале потребуется выполнить последовательное подключение обмоток. Удобство работ с таким трансформатором в том, что каждый из выводов обмотки имеет свое обозначение.

Для последовательного соединения вторичной обмотки нужно соединить между собой выводы 9 и 9’.

А к выводам 10 и 10’ – припаять два отрезка медного провода. Все провода, которые припаиваются к выводам должны иметь сечение не менее 2,5 мм. кв.

Что касается первичной обмотки, то для последовательного соединения нужно соединить между собой выводы 1 и 1’. Провода с вилкой для подключения к сети нужно припаять к выводам 2 и 2’. На этом с трансформатором работы завершены.

Далее нужно сделать диодный мост. Для этого потребуется 4 диода, способных работать с током в 10 А и выше. Для этих целей подойдут диодные мосты Д242 или аналоги Д246, Д245, Д243.

На схеме указано, как должно производится подключение диодов – к диодному мосту припаиваются провода, идущие от выводов 10 и 10’, а также провода, которые будут идти к АКБ.

Не стоит забывать и о предохранителях. Один из них рекомендуется установить на «плюсовом» выводе с диодного моста. Этот предохранитель должен быть рассчитан на ток не более 10 А. Второй предохранитель (на 0,5 А) нужно установить на выводе 2 трансформатора.

Перед началом зарядки лучше проверить работоспособность устройства и проверить его выходные параметры при помощи амперметра и вольтметра.

Иногда бывает, что сила тока несколько больше, чем требуется, поэтому некоторые в цепь установить 12-вольтовую лампу накаливания с мощностью от 21 до 60 Ватт. Эта лампа «заберет» на себя излишки силы тока.

ЗУ из микроволновой печи

Некоторые автолюбители используют трансформатор от сломанной микроволновой печи. Но этот трансформатор нужно будет переделывать, поскольку он является повышающим, а не понижающим.

Необязательно, чтобы трансформатор был исправен, поскольку в нем зачастую сгорает вторичная обмотка, которую в процессе создания устройства все равно придется удалять.

Переделка трансформатора сводится к полному удалению вторичной обмотки, и намотки новой.

В качестве новой обмотки используется изолированный провод сечением не менее 2,0 мм. кв.

При намотке нужно определиться с количеством витков. Можно сделать это экспериментально – намотать на сердечник 10 витков нового провода, после чего к его концам подсоединить вольтметр и запитать трансформатор.

По показаниям вольтметра определяется, какое напряжение на выходе обеспечивают эти 10 витков.

К примеру, замеры показали, что на выходе есть 2,0 В. Значит, 12В на выходе обеспечат 60 витков, а 13 В – 65 витков. Как вы поняли, 5 витков добавляет 1 вольт.

Ну а далее все делается, как описано выше – изготавливается диодный мост, производится соединение всех составных элементов и проверяется работоспособность.

Стоит указать, что сборку такого зарядного устройства лучше производить качественно, затем все составные части поместить в корпус, который можно изготовить из подручных материалов. Или смонтировать на основу.

Обязательно следует пометить где «плюсовой» провод, а где — «минусовой», чтобы не «переплюсовать», и не вывести из строя прибор.

ЗУ из блока питания АТХ (для подготовленных)

Более сложную схему имеет зарядное устройство, изготовленное из компьютерного блока питания.

Для изготовления устройства подойдут блоки мощностью не менее 200 Ватт моделей АТ или АТХ, которые управляются контроллером TL494 или КА7500. Важно, чтобы блок питания был полностью исправен. Не плохо себя показала модель ST-230WHF из старых ПК.

Фрагмент схемы такого зарядного устройства представлена ниже, по ней и будем работать.

Помимо блока питания также потребуется наличие потенциометра-регулятора, подстроечный резистор на 27 кОм, два резистора мощностью 5 Вт (5WR2J) и сопротивлением 0,2 Ом или один С5-16МВ.

Начальный этап работ сводится к отключению всего ненужного, которыми являются провода «-5 В», «+5 В», «-12 В» и «+12 В».

Резистор, указанный на схеме как R1 (он обеспечивает подачу напряжения +5 В на вывод 1 контроллера TL494) нужно выпаять, а на его место впаять подготовленный подстроечный резистор на 27 кОм. На верхний вывод этого резистора нужно подвести шину +12 В.

Вывод 16 контроллера следует отсоединить от общего провода, а также нужно перерезать соединения выводов 14 и 15.

В заднюю стенку корпуса блока питания нужно установить потенциометр-регулятор (на схеме – R10). Устанавливать его нужно на изоляционную пластину, чтобы он не касался корпуса блока.

Через эту стенку следует также вывести проводку для подключения к сети, а также провода для подключения АКБ.

Чтобы обеспечить удобство регулировки прибора из имеющихся двух резисторов на 5 Вт на отдельной плате нужно сделать блок резисторов, подключенных параллельно, что обеспечит на выходе 10 Вт с сопротивлением 0,1 Ом.

Далее изготовленная плата устанавливается в корпус и производится подключение всех выводов согласно схеме.

Затем следует проверить правильность соединения всех выводов и работоспособность прибора.

Финальной работой перед завершением сборки является калибровка устройства.

Для этого ручку потенциометра следует установить в среднее положение. После этого на подстроечном резисторе следует установить напряжение холостого хода на уровне 13,8-14,2 В.

Если все правильно выполнить, то при начале зарядки батареи на нее будет подаваться напряжение в 12,4 В с силой тока в 5,5 А.

По мере зарядки АКБ напряжение будет возрастать до значения, установленного на подстроечном резисторе. Как только напряжения достигнет этого значения, сила тока начнет снижаться.

Если все рабочие параметры сходятся и прибор работает нормально, остается только закрыть корпус для предотвращения повреждения внутренних элементов.

Данное устройство из блока АТХ очень удобно, поскольку при достижении полного заряда батареи, автоматически перейдет в режим стабилизации напряжения. То есть перезарядка АКБ полностью исключается.

Для удобства работ можно дополнительно прибор оснастить вольтметром и амперметром.

Это только несколько видов зарядных устройств, которые можно изготовить в домашних условиях из подручных средств, хотя вариантов их значительно больше.

Особенно это касается зарядных устройств, которые изготавливаются из блоков питания компьютера.

Если у вас есть опыт в изготовлении таких устройств делитесь им в комментариях, многие буду очень признательны за это.

Эта самоделка предназначена для откручивания прикипевших и ржавых гаек, путём их нагрева электричеством. Всё делается быстро и просто.

Для самоделки нам потребуется трансформатор от микроволновой печи.

С неё нужно будет снять вторичную обмотку. Вторичную обмотку я срезал так, взял болгарку и аккуратно надрезал обмотку, ещё раз повторюсь, срезайте аккуратно, чтобы не зацепить первичную обмотку.

Когда срезали обмотку, остатки из неё просто выбиваются молотком и сдаются на цвет металл.

Вот теперь наш трансформатор готов к намотки другой, вторичной обмотки.

Но сначала я подсоединил провод питания к первичной обмотке, сам провод взял от старого утюга.

Вторичную обмотку нужно мотать проводом от 7 мм, у меня влезло как раз 3 витка такого провода, вот как на фото.

Сам прибор практически готов, теперь нужно сделать щипцы и контакты, которые будут зажимать и нагревать гайку или деталь.

Для этого я взял один крокодил от прикуривателя, к нему прикрепил 2 полоски из стекловолокна (в качестве изолятора), я думаю, что из фото будет всё понятно.

К полоскам прикрутил металлические пластины, а к пластинам уже болты к которым прикручиваются концы проводов. Да, забыл сказать, что болты я взял от втягивающего реле, потому что они медные.

На ручки крокодила надел термоусадку.

Ну и решил сразу делать короб для своего устройства, короб я делал из остатков дсп, да ещё и установил туда вентилятор от компьютера для охлаждения трансформатора. А от ремня грм отрезал кусок и прикрутил, получилась ручка,в итоге получился вот такой прибор.

Ну а теперь к испытанию…

Гвозди и болты, накаляются практически сразу.

Гайка М6 накаляется за 1 секунду.

М8 тоже быстро накаляется

М10 уже накаляется помедленнее.

А вот здесь я уже испытал в реальных условиях, гайка не откручивалась на впускном коллекторе.

Тут устройство справилась на «ура» и гайка легко открутилась, но и провода тоже нагрелись, но не сильно, то есть они там не поплавились, а просто нагрелись.

Конечно, если кто желает себе сделать устройство помощнее, то соответственно и провода нужно брать толще 7 мм, возьмите миллиметров 10 и я уверен, что устройство будет работать в разы мощнее, но а мне и такой мощности вполне достаточно.

Получилось отличное устройство, которое пригодится в любой мастерской и в любом гараже автолюбителя.

Популярное;

2 thoughts on “Отличная самоделка из трансформатора от микроволновки для авто”

Для того, чтобы сделать точечную сварку своими руками, понадобится: * Трансформатор от микроволновки * Медный одножильный провод, сечением, чем толще, тем лучше * Провод для сварочного аппарата 1 метр * Пару обжимных наконечников с отверстием * Два болта с гайкой М10 * Ножовка по металлу * Дрель, сверло по металлу * Кнопка от микроволновки * Провод питания от сети 220В Вот и все, что нужно для сборки нашей самоделки. Шаг первый. Для начала необходимо найти микроволновку, из которой понадобится трансформатор и кнопка, также пригодится провод питания, который к удобству имеет две клеммы с изоляцией. Разбираем трансформатор. Для данной самоделки необходимо оставить первичную обмотку, вторичную же нужно удалить.

MOT — мощный трансформатор из микроволновой печи

Как то случайно в интернете попал на видео где демонстрировали работу перемотанного трансформатора от микроволновки, вот решил и себе попробовать сделать такой. Так как под рукой не было у меня печки, заказал сам MOT(Microwave Oven Tranformer) в интернете. Вот в таком виде он ко мне приехал:

Вес у него не плохой, если не ошибаюсь 4.5кг. Видим предостерегающую надпись:

По умолчанию вторичная обмотка трансформатора вырабатывает высокое напряжение (

2000 Вольт), поэтому я даже не стал его включать для проверки и Вам так сказать не советую

Суть в том что бы заменить эту обмотку на другую, с более низким напряжением, но с огромным током. Приступаем к переделке. Для начала аккуратно что-бы не задеть первичную обмотку, срезаем вторичку. Желательно с обоих сторон если хотите меньше мучений:

Дальше я просверлил обмотку с обеих сторон и отколупал ее от стенок:

После этих операций она отлично достается. Иначе ее оттуда не достать, разве что распиливать трансформатор, чего мне не хотелось делать. Вот что у меня получилось:

Токоограничивающие шунты которые так же достал, ставлю на место:

Поскольку я планирую использовать его в качестве точечного сварочного, мне нужен большой ток. Нашел дома вот такую алюминиевую шину:

«Наматываю» 2 таких шины по 2 витка. Учите если будете мотать так же параллельно, делайте это в одном направлении что бы не вышло противофазы. Это было нелегко:

Обрабатываю концы выводов и вперед к испытаниям

Видео:


Сжечь большой гвоздь так и не получилось, или СССР или просто старый.

В итоге получился трансформатор на 2 вольта и примерно 400-500А, замерять ток пока что нечем.

Ссылка на основную публикацию