Плазменный шар своими руками

Шар с молниями внутри – как сделать плазменную лампу Тесла

Вы когда-нибудь видели плазменную лампу? А может хотели собрать свой собственный шар с молниями внутри? В этой инструкции я покажу вам, как сделать лампу тесла из обычной лампочки!

Прежде чем мы создадим этот проект, я должен предупредить вас о безопасности.

Это устройство выдает высокое напряжение — до 25 000 вольт и может вас убить. НЕ ЗАМЕНЯЙТЕ НИКАКИЕ КОМПОНЕНТЫ ИЛИ ЧАСТИ КОМПОНЕНТОВ НА ДРУГИЕ ЧАСТИ С ИНЫМИ ПОКАЗАТЕЛЯМИ! Это важно для вашей безопасности. Еще, прежде чем создавать этот проект, я бы порекомендовал вам провести кое-какие исследования о высоких напряжениях. Также имейте в виду, что это не проект начального уровня, и вам нужно будет иметь опыт работы с обратными трансформаторами, высокими напряжениями и смертельными токами.

Вы были предупреждены.

Шаг 1: Методы: 1 и 2

Есть два способа сделать плазма лампу. Оба используют трансформаторы обратного хода переменного тока, но используют разные драйверы. Это важно знать, потому что вы будете создавать драйвер самостоятельно и должны выбрать свой метод, основываясь на нескольких факторах.

Метод 1 использует таймер 555 для включения и выключения мосфета. В нём используется меньше компонентов и его легче собрать.

Метод 2 использует чип TL494, который можно купить онлайн. Этот метод более сложный, но он дает вам больше контроля над схемой и позволяет даже вводить аудио.

Для начинающих я рекомендую метод 1, потому что в нём легче получить желаемую частоту. Если вы используете правильные компоненты, то частота установлена на безопасное значение. Это важно, потому что, если частота слишком низкая, вы словите неприятный шок. В конце этой инструкции я покажу 2 видео, в которых рассказывается, как настроить драйвер так, чтобы дуги были безопасны в работе.

Шаг 2: Метод 1: компоненты

Чтобы сделать лампу Tesla, нам нужен высокочастотный источник питания переменного тока. Также будет хорошо, если частоту можно будет регулировать для улучшения дуги. Мы будем делать наш собственный трансформатор обратного хода. Однако этот шаг можно пропустить, если у вас есть трансформатор обратной связи переменного тока.

  • чип 555
  • потенциометр 22к
  • резистор 10к
  • резистор 56 Ом
  • конденсатор 2,2 нф
  • регулятор напряжения 7809
  • зеленый светодиод
  • резистор 680 Ом
  • МОП-транзистор с N-канальным питанием (IRFP250, IRFP260, IRFP450 и т. д.)
  • Источник постоянного тока 12-24 В при 3 А или более (у меня напряжение 12 В при 18 А)
  • обратный трансформатор
  • 30 метров магнитного провода 30 калибра (0,255 мм)
  • 30 см магнитного провода 22 калибра (0,644 мм)
  • Электроизоляционная лента
  • Тефлоновые ленты
  • Для корпуса
  • Коробка проекта
  • Различные винты и гайки
  • Сверла
  • 60 ваттная лампочка

Как видите, в этом проекте есть разные шаги. Я предполагаю, что у вас нет обратноходового преобразователя переменного тока. Преобразователи от современных телевизоров, компьютерных мониторов и других устройств — для постоянного тока, потому в них встроен внутренний диод, который выпрямляет импульс обратного хода. Если вы можете найти портативный мини телевизор, скорее всего, вы найдёте вариант AC, и сможете использовать его. Но самое интересное в этом проекте — это намотка собственного трансформатора, поэтому я проведу вас по всем шагам.

Шаг 3: Собираем драйвер

Здесь особо нечего сказать. Просто убедитесь, что вы правильно установили соединения на чипе 555. Пока не беспокойтесь о подключении первичной обмотки, мы вернемся к этому после сборки трансформатора.

Шаг 4: Метод 2: компоненты

Чтобы сделать плазменный шар, нам нужен высокочастотный источник питания переменного тока. Также будет нужно, чтобы частота была настраиваемой, чтобы получить лучшую дугу и самый чистый звук. Мы будем делать наш собственный трансформатор обратного хода.

  • ШИМ TL494
  • потенциометр 10к
  • потенциометр 22к
  • резистор 2.2к
  • резистор 10 Ом
  • 100 нф конденсатор
  • 10 нф конденсатор
  • 47 нф конденсатор
  • 200 мкФ конденсатор
  • МОП-транзистор с N-канальным питанием (IRFP250, IRFP260, IRF540, IRFP450, IRFP064 [я использую такой])
  • UF4007 или быстрый диод
  • аудио разъем-папа
  • регулятор напряжения 7812
  • Источник постоянного тока 12-24 В при 3 А или более
  • Обратноходовой преобразователь переменного тока (домашние не очень хорошо работают)
  • Коробка проекта
  • Различные винты и гайки
  • Сверла
  • 60 ваттная лампочка

Как видите, у этого метода много дополнительных частей. Другим недостатком является то, что большинство самодельных преобразователей, которые я пробовал, не работают с этой схемой. Но если вы все же хотите попробовать сделать самодельный преобразователь, переходите к следующему шагу.

Шаг 5: Создаём преобразователь

  • обратный трансформатор
  • 30 метров магнитного провода 30 калибра
  • 30 см магнитного провода 22 калибра
  • Электроизоляционная лента
  • Тефлоновые ленты

Что такое обратноходовой трансформатор?

Обратноходовой трансформатор — это трансформатор, который можно найти в ЭЛТ-мониторах и телевизорах. Он используется для создания высокого напряжения и генерирования электронного луча для проецирования изображений на экран. Вы можете легко выпаять такой из телевизора или ЭЛТ-монитора при помощи паяльной лампы.

Посмотрите на обратноходовой трансформатор, который у вас на руках. Вам нужно получить ферритовый сердечник. Ферритовый сердечник — это оголенный стержень феррита, который соединяется внутри с трансформатором. Для этого попробуйте несколько раз ударить по ферритовому сердечнику резиновым молотком. Если это не поможет, погрузите трансформатор в горячую воду и попытайтесь ослабить лак, удерживающий сердечник на месте. Как только вы сможете покачивать сердечник, попробуйте удалить металлическую скобу, которая удерживает его на месте. Как только это будет сделано, две части сердечника должны выпасть из трансформатора.

Вы на полпути! Далее, посмотрите, насколько большой ваш сердечник. Самые большие сердечники обычно находятся в больших телевизорах, но я использовал самое маленькое ядро, которое смог найти, чтобы сэкономить место. Мы ищем вариант примерно на 10000 вольт.

Затем возьмите картонную карточку и загните ее в трубку, которая может поместиться вокруг цилиндрической стороны вашего сердечника.

Я нарисовал диаграмму, чтобы всё было наглядно.

Затем начните наматывать проволоку 30 калибра вокруг трубки. Начните намотку на расстоянии примерно 1,5 см от края бумаги, потому что намотка, расположенная слишком близко к сердечнику, приведет к дуге. Обмотайте провод вокруг трубки, убедившись, что мотки плотно прилегают друг к другу и не перекрываются. Наматывайте, пока вы не достигнете 1,5 см до конца бумаги. Затем поместите кусок изоленты поверх края обмотки. Оберните обмотку большим количеством тефлоновой ленты и накройте ее слоем изоленты.

Затем начните наматывать второй слой поверх предыдущего. Обмотайте примерно на 5 оборотов меньше, остановитесь, закройте тефлоном и изолентой и запустите новый слой, который намотайте поверх предыдущей намотки. Делайте это до тех пор, пока у вас не останется места. На последней обмотке заклейте всю вторичную ленту большим количеством изоленты.

Для первичной обмотки сделайте 7 витков проводом 22 калибра вокруг другой стороны сердечника. Готово!

Шаг 6: Тестирование трансформатора и его подготовка

Подсоедините трансформатор к схеме и проверьте его. Возьмите карандаш с проволокой, прикрепленной к нему. Подсоедините один конец провода к одному концу вторичной обмотки. Затем подключите источник питания 12-24 В к входу драйвера. Встряхните его.

Если вы слышите шум, значит, он работает. Медленно соедините вторичные провода вместе, используя карандаш. Фиолетовая электрическая дуга должна прыгать с одного конца на другой. Если всё так, то попробуйте отрегулировать 22к потенциометр, чтобы изменить частоту и получить тихую толстую дугу.

Если у вас не получилось, то есть несколько вещей, которые могут пойти не так:

Ваша вторичная катушка дает внутреннюю дугу. Вы должны перемотать вторичную катушку и использовать больше изоляции.

Работает и внезапно останавливается:

  1. Ваш мосфет может быть неисправен. Проверьте его на короткое замыкание с помощью мультиметра.
  2. Ваш чип 555 сгорел. Замени его.

Ничего не происходит при включении драйвера. Возможно, вы неправильно прочитали схему. Проверьте все соединения.

Если вы слышите шум, значит, все работает. Медленно соедините вторичные провода вместе, используя карандаш. Фиолетовая электрическая дуга должна прыгать с одного конца на другой. Если всё так, попробуйте отрегулировать оба потенциометра, чтобы изменить частоту и рабочий цикл. Попробуй получить тихую толстую дугу. При желании вы можете подключить музыкальный проигрыватель к аудиоразъему и проверить, будет ли дуга воспроизводить музыку. Если все это произойдет, то поздравляю! Вы почти закончили.

Читайте также:  Реанимация автомобильного усилителя

Если это не так, то есть несколько вещей, которые могут пойти не так.

  1. Ваша вторичная катушка дает внутреннюю дугу. Вы должны перемотать вторичную катушку и использовать больше изоляции.
  2. Работает и внезапно останавливается. Ваш мосфет может быть неисправен. Проверьте на короткое замыкание с помощью мультиметра.
  3. Ничего не происходит при включении драйвера. Возможно, вы неправильно прочитали схему. Проверьте все соединения.

Дополнительное вощение

Эта часть довольно крута. Если вы используете мелки для воска, снимите бумагу со всех мелков. Возьмите старую банку, например, консервную, и поместите мелки в неё. Поместите банку на очень слабый огонь на плиту. Растопите воск полностью. Затем возьмите кусочек алюминиевой фольги и создайте форму для вашего обратноходового трансформатора.

Попытайтесь сделать коробку, в которую поместится трансформатор. Поместите его в форму так, чтобы вторичный и первичный провода торчали вверх. Затем медленно вылейте воск на трансформатор, пока он не будет полностью погружен. Покачайте форму немного, чтобы воск просочился в отверстия в трансформаторе. Дайте коробке полежать одну ночь, чтобы всё остыло.

Когда вы вернетесь на следующий день, снимите фольгу. Вы получите блок воска с 4 торчащими проводами. Это должно помочь вашему трансформатору работать дольше и предотвратить дуги.

Шаг 7: Включаем!

Поместите металлическое основание вашей лампочки на высоковольтные выходы вашего трансформатора и включите его!
Пожалуйста, посмотрите это видео, которое поможет вам с настройкой и эксплуатацией плазменного шара:

И помните, что высокое напряжение может быть смертельным, если работать с ним неправильно. Будьте осторожны и веселой вам сборки!

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Плазменный шар своими руками

Однажды мне посчастливилось приобрести на развалах колбу от китайского плазменного шара. Электроника шара сгорела, а корпус выбросили. Вообщем, ничто не ограничивало полет моей фантазии.

Выношу на общественный суд мою конструкцию и электронику для плазменного шара.

Электроника шара в моем исполнении довольно проста – это полумост на одной микросхемке. В качестве трансформатора я использую строчник ТВС-110ПЦ15 со штатными обмотками, тоесть ничего своего не мотаю, и это хорошо.

Не смотря на простоту, и тут есть несколько граблей, на которые можно наступить, их я и хочу обсудить. Перед тем, как обсуждать, впрочем, вам нужно посмотреть схему:

В схеме две неочевидных вещи.

Первая – “молнии” в плазменном шаре – это ток. Ток должен течь откуда-то и куда-то, то есть образовывать замкнутый контур. Надеюсь, этот рисуночек поможет понять о чем это я. Голубым обозначен контур, по которому должен протечь ток. Куда утекает ток, мы знаем — он через емкость шар-земля утекает в землю. Нужно теперь придумать как его из земли забирать (замыкать контур). Проще всего для этого использовать заземление, однако заземление не всегда доступно в наших суровых пост-советских реалиях. Поэтому нужно сделать свое, виртуальное, заземление.

На схеме для этого используются конденсаторы C1 и C2, которые обладают значительно меньшим импедансом (сопротивлением), чем конденсатор шар-земля. Один из проводов в розетке всегда соединен с землей, но мы не знаем заранее, который поэтому используем сразу оба.

Возникает вопрос – если шар и его молнии остаются связанными с розеткой, не ударит ли нас, когда мы прикоснемся к шару? А если друг, случайно, один из этих конденсаторов (С1 или С2) выйдет из строя, что тогда? Ударит?

Во-первых конденсатор емкостью 2.2нФ не способен пропустить через себя ток, достаточный чтобы навредить человеку. На схеме написан квалификатор конденсатора – Y2. Конденсаторы с таким обозначением во-первых очень сложно вывести из строя, а во-вторых, они гарантированно разорвут цепь если что-то пойдет не так.

Вторая неочевидная вещь в схеме была связанна с резистором питания микросхемы – R2. В даташите ничего толкового я не нашел, поэтому пришлось его подбирать. 180кОм – это максимальное сопротивление из стандартного ряда, при котором схема работала стабильно. Если у вас стримеры будут мерцать, нужно будет уменьшить это сопротивление.

Теперь про конструкцию. В качестве первичной обмотки я использовал выводы 12 и 9 строчника ТВС-110ПЦ15. Где расположены эти выводы можно увидеть на картинке

Оранжевй провод – идет к виртуальному заземлению, белый и фиолетовый – первичка, синий – высоковольтный

Я сделал рабочую частоту полумоста равной 30кГц. Потому как чем меньше частота, тем меньше энергопотребление. Для того, чтобы на выходе напряжение было побольше, я заставляю строчник работать в резонансе. Резонанс подбирается конденсатором С9. Его, кстати, лучше поставить на напряжение не меньше 620В. Подбирать резонанс можно и частотой (вместо резистора R3 поставить подстроечник, к примеру), но при изменении рабочей частоты меняется потребление и схема может начать работать нестабильно.

Механика тоже довольно проста. В качестве корпуса я использовал редуктор от вентиляции. Такие можно найти практически в любом строительном магазине. Все узлы держатся на трении. Для того, чтобы фанерка не вставлялась дальше, чем нужно, я приклеил деревянные брусочки-ограничители. Провод питания посадил на скобы и облил термоклеем, чтобы и не думал вырываться.

А вот с колбой пришлось немного помудрить. Во-первых, колбе обязательно нужна металлическая поверхность снизу, иначе “молнии” начинают бить исключительно вниз. Металлическая поверхность приобретает тот-же заряд, что и молнии и отталкивает их. Естественно, эта поверхность должна быть соединена с высоковольтный проводом.

Для удержания колбы, я вырезал деревянный кружек, который очень плотно входит в корпус, и не требует дополнительной фиксации. В разобранном виде колба получилась вот такой:

После сборки дрожащими руками всовываем вилку в розетку, ииии…. Видем красивый плазменный шарик!

На последок, поделюсь печатной платой. Плата отзеркалена.

Плазменная лампа из пластиковой бутылки своими руками

С помощью видео канала “Александр Полулях”попробуем сделать плазменную лампу, конструкция которой будет состоять из обычной пластиковой бутылки, а питаться он будет высоковольтным напряжением. Ее не очень сложно изготовить своими руками.

А дешево такие агрегаты продаются в этом китайском магазине.

Берем пластиковую бутылку, проделываем два отверстия в ее донышке, и также сделаем два в крышке. Из донышка такой же бутылки делаем подставку, которую приклеим таким образом, как показано в ролике. Далее в дырки нужно продеть по одному тонкому одножильному проводу без изоляции. Также эти провода просовываем через крышку. Рассчитываем, чтобы когда она закрывалась, не было замыкания. То есть нужно сначала закрутить противоположную сторону – пару витков – затем продеть внутрь отверстия, и после этого закручивать ее. По идее, они должны будут раскрутиться и не замыкать между собой.

Изобретатели делают покупки в бюджетном китайском интернет-магазине.

Далее на окончаниях проводов делаем узелки. В одно из этих отверстий со стороны пробки закачиваем инертный газ аргон. После продувки также заделываем герметично термоклеем. К этим проводам подсоединяем любой источник высоковольтного напряжения, и смотрим, что получается.
Смотрите плазменную эффектную лампу, созданную собственными руками на видео ниже.

Источник: Александр Полулях

Самодельный плазменный шар-светильник

Я уверен, что вы знаете, это интересное украшение в последние годы широко продается. Вы также можете создать простой плазменный шар самостоятельно. Основой плазменного шара является небольшой источник высокочастотного высокого напряжения в несколько тысяч вольт на частоте от нескольких до нескольких десятков килогерц. Это напряжение подается на электрод, размещенный в центре стеклянной сферы, заполненной подходящим газом. Из-за емкостных токов разряды образуются между электродом и стеклом. Когда вы дотрагиваетесь до мяча, светящиеся разряды будут в основном направлены на область, к которой вы прикасаетесь.
В моей конструкции высокочастотное высоковольтное питание очень просто. Она использует трансформатор высокого напряжения от старого телевизионного приемника. Это должен быть трансформатор без встроенного выпрямителя, чтобы иметь возможность обеспечивать высокочастотное напряжение. Первичная обмотка трансформатора удалена или оставлена ​​неиспользованной, и намотан новый первичный (5 витков и 3 витка), как показано на схеме ниже. Вторичная обмотка оставлена ​​в исходном состоянии. Другая часть схемы – это силовой транзистор и небольшая лампочка (от 24 В 5 до 10 Вт), которая служит сопротивлением и одновременно сигнализирует о включении питания (эту лампу можно заменить резистором 50-100 Ом 5-10 Вт). Эти компоненты образуют простой генератор. Конденсатор 1000 мкФ только уменьшает внутреннее сопротивление источника питания. Напряжение около 16 кВ и частота около 25 кГц. Примечание – отрицательный полюс должен быть заземлен.
Плазменный шар заменен обычной лампой сетевого напряжения (приблизительно 25 – 200 Вт), которая заполнена аргоном. Эффект похожий. Между нитью и колбой образуются несколько движущихся искр.

Читайте также:  Зарядное устройство для портативных аккумуляторов

Предупреждение! Высокое выходное напряжение опасно и может привести к поражению электрическим током или ожогам. За любую травму, вызванную этим устройством, я не несу никакой ответственности. Все, что вы делаете на свой страх и риск.

Простейший самодельный плазменный шар,

самодельный плазменный шар, работающий с лампочкой 200 Вт

Плазменный шар своими руками

Плазменные шары сейчас продаются в изобилии, и такой диковинкой никого не удивишь. В данном мастер-классе было принято решение придать шару винтажный вид. Для этого помимо самого шара понадобился старый автомат выдачи резинок. Предстояло разобрать обе конструкции, и собрать их заново, немного усовершенствовав сам автомат.

Чтобы сделать плазменный шар своими руками, подготовьте:

  • исходный плазменный шар;
  • старый автомат выдачи резинок;
  • МДФ;
  • АБС трубу;
  • острый нож;
  • силикон;
  • паяльник и припой;
  • акриловые палочки для мороженого;
  • винты;
  • горячий клей;
  • провода;
  • термоусадочную муфту;
  • вакуумный автомобильный шланг;
  • наждачную бумагу мелкозернистую;
  • карандаш;
  • дрель;
  • сверла.

Шаг 1. Соблюдая технику безопасности, снимите стеклянный шар с основания игрушки. Делайте это предельно аккуратно, так как проходящих через него проводов фактически нет, а заряд мощный.
Разберите и базу шара. Плату отвинтите и отложите, она вам понадобится немного позже.

Если у вас нет соответствующего опыта работа с электроприборами, повторять данный мастер-класс не рекомендуется, так как это чревато серьезными последствиями с увечьями для здоровья.

Шаг 2. Теперь предстоит усовершенствовать основание аппарата по выдаче резинки. Для этого из МДФ нужно вырезать соответствующее по диаметру основание.

При разборке базы плазменного шара обратите внимание на наличие вентиляционных отверстий. Они нужны для отвода тепла. Сама плата при этом также не крепилась ко дну, а была немного приподнята, чтобы обеспечить хорошую циркуляцию воздуха. Игнорировать такие мелочи в данном проекте нельзя. Их обязательно следует повторить при дальнейшей сборке.

Шаг 3. Приложите пластиковое основание базы к заготовленному куску МДФ, наметьте места отверстий для вентиляции и места крепления болтов.

Шаг 4. Отверстия вентиляции просверлите. Для крепежных болтов не делайте их сквозными. Сделайте вырезы для шнура и выключателя. Зашкурьте МДФ.

Прикрепите плату, отложенную ранее, установив ее на уровень выше при помощи акриловых палочек из-под мороженого. Припаяйте ее к шнуру.

Шаг 5. К плате необходимо припаять провода и термоусадочную муфту, которые и будут соприкасаться с шаром. Чтобы подвести их сгодилось отверстие в самом автомате. Для этого через него был пропущен соответствующего диаметра вакуумный автомобильный шнур. В него была вставлены муфта с проводом, и все это заливалось силиконом.

Шаг 6. Смазав края МДФ горячим клеем, необходимо аккуратно протянуть провод через отверстие автомата. Натяните его, но не оторвите. МДФ приклейте к основанию автомата.

Шаг 7. Из АБС-трубы вырежьте небольшую прокладку, смажьте ее силиконом и поместите внутрь верхней части автомата. Следом отправьте шар, проверьте, попал ли он в гнездо.

Ваш обновленный плазменный шар в винтажном стиле готов!

Как сделать плазменный шар?

Плазменный шар – это красивая декоративная лампа, которая может стать замечательной частью интерьера любого помещения. Этот светильник дает обширное пространство для творчества, создания дизайна всех видов. Плазменные шары на сегодняшний день имеются в продаже в большом количестве, и таким чудом уже будет трудно кого-то удивить. Однако можно попробовать изготовить данную красоту и своими руками.

Необходимые материалы

Чтобы создать такую сферу собственноручно, нужно подготовить:

  • первоначальный плазменный шар;
  • АБС трубу;
  • бывший автомат выпуска резинок;
  • силикон;
  • МДФ;
  • паяльник;
  • провода;
  • острый нож;
  • акриловые палочки;
  • горячий клей;
  • вакуумный автомобильный шланг;
  • винты;
  • мелкую наждачную бумагу;
  • сверла;
  • карандаш;
  • термоусадочную муфту;
  • дрель.

Как сделать плазменный шар

Процесс работы будет состоять из нескольких шагов.

1. Придерживаясь техники безопасности, необходимо снять стеклянный шар с основы игрушки, делая это очень осторожно, потому что идущих через нее проводов практически нет, а заряд – очень сильный. Следует разобрать еще и центр шара. Плату нужно открутить и отложить в сторонку, она будет нужна чуть позднее.

Если отсутствует определенный навык работы с электроприборами, тогда следовать данному уроку нежелательно, так как это грозит тяжелым исходом и ранами на теле.

2. Далее понадобится улучшить устройство автомата по выдаче резинок. Для этого потребуется вырезать из МДФ идентичную диаметру основу.

При демонтаже опоры плазменного шара нужно обратить внимание на присутствие вентиляционных дырочек. Они должны быть для отведения тепла. Плата также немного приподнимается, чтобы предоставить свободное передвижение воздуха, но никак не крепится к самому низу.

3. Плазменный шар своими руками можно мастерить дальше. Теперь нужно приложить пластиковую основу базы к готовой части МДФ, наметив места щелей для вентиляции и точки прикрепления болтов.

4. Следует просверлить отверстия вентилирования, не делая их сквозными для крепежных болтов, создать вырезы для провода, выключателя и зашкурить МДФ.

5. Далее необходимо закрепить плату, зафиксировав ее на ступень выше с помощью акриловых палочек для мороженого, и припаять ее к кабелю.

6. К плате еще требуется припаять термоусадочную муфту и проводки, которые будут контактировать с шаром. Чтобы провести их, понадобится прорезь в самом аппарате. Для этого через автомат проходит подходящего диаметра вакуумный автомобильный провод. В него вставляется муфта со шнуром, и все это наполняется силиконом.

7. Намазав стороны МДФ горячим клеем, осторожно вытяните проводок сквозь отверстие аппарата. МДФ следует приклеить к центру автомата.

8. Теперь из АБС-трубы необходимо вырезать маленькую подкладку, смазать ее силиконом и положить в середину внешней части установки. Затем следует собрать игрушку, проконтролировать, попала ли она в гнездо. Теперь можно посмотреть, как выглядит схема плазменного шара.

Шар с молниями

Электроника такой игрушки довольно несложная – это полумост на микросхеме. В работе трансформатора применяется строчник ТВС-110 ПЦ-115 с ординарными обмотками.

Плазменный шар с молниями является зарядом тока, который должен постоянно откуда-то выходить и куда-то течь, чтобы сформировывался закрытый контур. Сам ток протекает сквозь сосуд сферы и идет в почву. Для того чтобы энергию брать из земли, лучше всего применять заземление. Идеально будет сделать его собственноручно, так как в реальном мире оно не всегда доступно.

Не опасно ли такое занятие?

Для самого заземления используются конденсаторы C1, C2, имеющие гораздо меньший импеданс (сопротивление), нежели теплообменник “шар-земля”. Один из проводков в розетке постоянно связан с грунтом. Но, не зная, какой точно из них соединяется, приходится применять сразу оба.

И сразу встает немаловажный вопрос: не ударит ли током, если прикоснуться к шару? Ведь сфера и ее молнии остаются соединенными с розеткой. Или, например, любой из конденсаторов поломается? Есть ответ: конденсатор емкостью 2.2 нФ никак не может пропустить сквозь себя электричество в таком количестве, которое бы навредило человеку. Плазменный шар будет иметь конденсаторы с символом Y2, которые нелегко вывести из строя. Они также стопроцентно разомкнут цепочку, если пойдет какое-то нарушение.

Вторая часть схемы была соединена с резистором энергии микросхемы R2. Схема работает постоянно при максимальном импедансе нормальной линии 180 кОм. Если стримеры будут мигать, тогда можно будет уменьшить такое сопротивление.

Конструкция плазменного шара

В качестве первичной обвивки лучше использовать выводы 9, 12 строчника ТВС-110 ПЦ15. Оранжевый проводок соединен с виртуальным заземлением, синий – с высоковольтным, а фиолетовый и белый провода – с первичным.

Рабочая частота полумоста должна равняться 30 кГц – это будет экономить электроэнергию. Чтобы напряжение на выходе было большим, строчник должен действовать в резонансе, который подбирается конденсатором С9. И его лучше выставить на напряжение не менее 620 В. Выбирать резонанс можно аналогично и частотой. Но если изменится рабочая частота, тогда и повысится энергопотребление, и схема может выйти из строя.

Некоторые хитрости

Плазменный шар имеет механику, которая также является несложной. В качестве корпуса идет редуктор от вентиляции. Все узелки удерживаются на трении. Чтобы фанерка не влезала дальше, чем требуется, можно приклеить деревянные палочки-ограничители, провод питания посадить на скобы и залить термоклеем.

С колбой пришлось чуть-чуть схитрить, так как ей в обязательном порядке необходима металлическая наружность снизу. Просто молнии могут начать бить сугубо вниз. Поверхность из металла имеет такой же резерв, что и молнии, она их просто отталкивает. Конечно, эта плоскость должна соединяться высоковольтным проводом.

Чтобы колба держалась, следует вырезать деревянную окружность, которая достаточно крепко заходит в сам корпус и не нуждается в специальном креплении.

После монтирования можно засовывать вилку в розетку. Должен получиться великолепный плазменный шар!

Плазменный шар своими руками

1. Работа со стеклом.

Стекло — очень необычный для того, кто не пробовал работать с его жидкой фазой материал. По стеклодувному делу есть довольно много неплохих книг, и для желающих попробовать свои силы можно неплохо изучить по ним матчасть. В применении к плазменному шару нам требуются два предмета: стеклянная трубка и шаровая химическая колба (важно: необходимо точное совпадение марок стекла! если колба пирекс, то трубка — тоже, если колба «жёлтая» (молибденовое стекло, скажем, С52), то трубка тоже. В противном случае растрескивание при остужении и провал всей работы почти неизбежны), а в качестве инструментов — графитовые палочки примерно 5-6 мм в диаметре, длинноносые пассатижи, хорошая пропановая горелка (необходим полновесный пропановый баллон хотя бы на 5 литров: все одноразовые мелкие баллоны не подойдут из-за требований к расходу газа и охлаждения баллона вследствие этого), способная прогреть достаточно большую рабочую область и водородная горелка, без которой я бы скорее всего не справился вообще (не знаю как работают без неё ортодоксальные стеклодувы, обходящиеся смесью природного газа и кислорода).

Работа со стеклом, включая изготовление электровакуумных приборов, довольно подробно описана в некоторых книгах, например в «Технике лабораторного эксперимента». Рекомендую её к изучению всем интересующимся.

2. Работа с вакуумом (более подробно можно прочесть в отдельной статье по ссылке).

3. Работа с электроникой.

Основная задача — обеспечить высокое напряжение высокой частоты и не очень большой мощности. С этим идеально справляется обычный однотактный генератор на 555 со строчником на выходе полевика, вот только одна проблема: для достижения большого напряжения у этой схемы необходим резонансный режим строчника, и резонанс должен достигаться на частотах в сотни килогерц, чтобы обеспечивать красивые разряды в шаре. Эту проблему пока решить так и не удалось, и приходится обходиться относительно низкими частотами — около 30-40 кГц.
На худой конец можно сделать просто блокинг-генератор или мультивибратор, но я тешу себя надеждой, что сумевший дойти уже до запитывания шара читатель может сделать ген на 555 таймере самостоятельно
Неплохой идеей будет подключить к строчнику прерыватель: форма разрядов может изменяться очень интересным и непредсказуемым образом.

4. Работа с газами.

Самая интересная и неоднозначная область. Количество вариаций различных форм разряда, цветов и эффектов в разреженных газах совершенно неисчислимо; есть подозрение что сочетаниями можно получить почти любой цвет. Более того, в разных режимах работы источника напряжения газы могут вести себя и ионизироваться по-разному, часто непохоже на самих себя в других режимах.
Для напуска газов в систему необходимо изготовить напускатель. В общем случае это трубка, которая вставляется в разрыв шланга вакуумной системы. В трубку впаян нержавеющий капилляр, оканчивающийся краном-натекателем (кран с очень низкой и точно регулируемой пропускной способностью). По другую сторону крана расположен газовый баллон с соответствующим газом. Для плазмашара лучше изготовить два или три таких напускателя, чтобы иметь возможность напускать несколько разных газов одновременно. Естественно, вся конструкция напускателя должна быть герметичной относительно атмосферы, чтобы её можно было невозбранно вакуумировать.
Основные параметры, которые, по-видимому, влияют на характер разряда в шаре, таковы:
1) Частота источника напряжения. Чем она выше, тем легче происходит ионизация и тем мощнее накачка разряда.
2) Давление отдельного газа. Тот же неон может быть оранжевым, красным, белым, синим и розовым; ксенон — сине-белым, голубым, коричневым, зелёным или жёлтым при разных давлениях. Кроме того, тяжёлые газы — ксенон и криптон — имеют свойство шнуроваться при давлении выше некоторого критического.
3) Соотношение газов и примесей в смеси. Разумеется, можно смешивать газы, что будет влиять на лёгкость ионизации, цвет разряда и так далее. Например, небольшая добавка ксенона в неон приведёт к белым ксеноновым шнурам с красными окончаниями.
4) Плотность тока. В плазменном шаре она в основном определяется местом горения разряда: около потенциального электрода плотность тока максимальна, на краю сферы — минимальна. Это можно использовать для создания неравномерно окрашенных разрядных жгутов.

Возможных смесей и сочетаний газов неисчислимое множество, это область для исследований на годы, и я непременно попытаюсь привести свои знания к некой системе, когда накоплю достаточно материала, и опубликовать наработки. Пока что самое простое и понятное — чистые газы.
Чистые газы:
а) Ксенон . Самый тяжёлый из стабильных инертных газов, активно образует извивающиеся глистоподобные тентакли при давлении выше определённого. Наиболее красивый, дорогой и редкий. Нормальный цвет — сине-фиолетовый, при сильных разрежениях — коричнево-голубой. Загрязнения органикой и галоген-органикой придают зелёный оттенок. Чувствителен к загрязнениям и примесям в плане лёгкости ионизации.
б) Криптон . Сильно похож на ксенон, но хуже жгутуется, труднее ионизируется, более коричневого оттенка.
в) Неон . Ионизируется при атмосферном давлении, образуя красно-белые жгуты, при понижении давления (или плотности тока) — становится оранжевым, и в целом придаёт любой смеси красный, розовый или оранжевый оттенки. Сильно критичен к чистоте, даже небольшие примеси убивают как яркость свечения, так и оранжевость цвета разряда.
г) Азот . Фиолетово-красноватые разряды, сильно напоминает воздух (ещё бы, воздух на 3/4 и есть азот).
д) Аргон . Похож на азот, фиолетовый при малой плотности тока, более оранжевый, чем красный, при большей. Как и неон ионизируется при атмосфере, сильно улучшает ионизацию других газов даже в виде небольшой примеси к ним. Около атмосферного давления приобретает ярко-голубо-белый цвет.

Самый простой и неэкономный способ смешивать газы внутри шара — просто напускать в откачанный шар много какого-либо газа, после чего попеременно откачивать избытки или добавлять второй газ. Все измерения только качественные, на основании формы разряда, но это лучше, чем ничего.

После получения требуемых эффектов внутри плазмашара остаётся только его отпаять, аккуратно заплавив и пережегши сосок штенгеля. Необходимые подробности процедуры описаны в литературе или разрабатываются самостоятельно с опытом; упомяну только, что стекло имеет некоторую инерционность в плане вязкости, и если нагреть отвакуумированный сосуд слишком сильно, он просто впячится в месте перегрева внутрь пузырём и лопнет, разрушив все труды. Поэтому греть следует очень, очень неспеша и аккуратно. Процедура отжига стандартная. Если всё сделано верно, можно радоваться успешному изготовлению настоящего плазменного шара на коленке, причём значительно более красивого и качественного, чем заводской хлам.

Ссылки по теме:

http://www.personal.psu.edu/sdb229/Plasma%20ball%20colors.html — неплохое описание цветов газов и смесей в плазменном шаре
http://www.youtube.com/user/nerodesign000 — огромные плазменные шары музейного качества
http://www.youtube.com/user/StandingWulf — химик-энтузиаст, ищущий красивые смеси газов под плазмашары
http://www.strattman.com/products/plasma/index.html — современные производители плазменной скульптуры. Ценники приводят в тихий ужас, но оно явно себя оправдывает.

01.10.12 Недавно сделал питальник к синему шару. Теперь он может быть просто воткнут в розетку и работать как обычные плазмашары. Смотрим видео!

Ссылка на основную публикацию