Приставка-регулятор к блоку питания

Блок питания с регулировкой напряжения и тока

Друзья, сегодня хочу рассказать вам о своей новой самоделке, это блок питания с регулировкой напряжения и тока о котором мечтают все без исключения начинающие и опытные радиолюбители. Устройство можно использовать, как в качестве лабораторного блока для питания различных самоделок, так и в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Блок питания имеет стабилизированный регулятор напряжения и систему ограничения силы тока, защиту от переполюсовки клейм аккумулятора со световой индикацией, а также автоматический регулятор скорости вентилятора, изменяющий обороты в зависимости от нагрева радиатора. На этом рисунке изображена схема блока питания с регулировкой напряжения и тока рассчитанная на ток до 10А. К этой схеме можно подключать любой трансформатор или импульсный источник питания от 12 до 30В. Для тех кто любит по мощнее, в этой статье вы также найдете схему рассчитанную на ток до 25А. Не буду торопить события. Внимательно читайте статью до конца.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 10А

Регулируемый стабилизатор напряжения LM317 позволяет плавно регулировать напряжение в диапазоне от 1.2 до 30В. Регулировка напряжения выполняется переменным резистором Р1. Транзистор Т1 MJE13009 выполняет роль ключа пропускающего через себя большой ток.

Система ограничения силы тока выполнена на полевом транзисторе Т2 IRFP260, позволяет ограничивать ток от 0 до 10А, управление током осуществляется переменным резистором Р2, что позволяет использовать данный блок питания в качестве зарядного устройства для зарядки автомобильных аккумуляторов. Мощный резистор R6 с сопротивлением 0.1 Ом 20 Вт выполняет роль шунта. Купить его не проблема в Китае на Али Экспресс. Если не хочется долго ждать можно соединить несколько резисторов параллельно тогда получится один мощный резистор. Обратите внимание на то, что при параллельном соединении резисторов применяется специальная формула.

Общее сопротивление резисторов делится на количество резисторов. Как определить общее сопротивление, одинаковых резисторов? Надо просто взять сопротивление одного резистора и разделить на количество резисторов. Например, у меня есть 4 резистора, сопротивление каждого резистора 1 Ом и рассеиваемая мощность 10 Вт, следовательно общее сопротивление всех резисторов 1 Ом, если их соединить параллельно, то получится общее сопротивление четырех резисторов 0.25 Ом 40 Вт. Мощность всех резисторов суммируется. Таким образом можно сделать резистор любой мощности. На фотографиях и в видеоролике в моем блоке питания вы увидите сборку из 4 резисторов по 1 Ом 10 Вт с общим сопротивлением 0.25 Ом и мощностью 40 Вт. Сделал я так потому, что в тот момент у меня не было под рукой, да и в магазине тоже мощного резистора на 0.1 Ом 20 Вт. Но вот чудо, оказалось, что регулировка тока в данной схеме отлично работает даже с сопротивлением в 0.25 Ом. Мне стало интересно и я решил провести серию экспериментов с резисторами пришедшими через пару недель из Китая, с сопротивлением в 0.1 Ом, 0.25 Ом, 0.5 Ом, и пришел к выводу, что с любым из этих сопротивлений регулировка тока работает отлично. То есть, в данную схему можно поставить резисторы с любым сопротивлением в диапазоне от 0.1 Ом до 0.5 Ом, что делает эту схему доступной для сборки начинающим радиолюбителям. Ведь не всегда можно найти в магазине резисторы с нужным сопротивлением и мощностью. Ещё я пробовал заменить резистор куском нихромовой спирали от электроплитки, все тоже самое на работу регулировки тока это никак не повлияло, единственный минус в том, что спираль сильно нагревалась и её пришлось залить в бетон.

В схеме имеется встроенная защита от переполюсовки. При правильном подключении блока питания к аккумулятору загорается зеленый светодиод Led1. В случае не правильного подключения загорается красный светодиод Led2, сигнализирующий о ошибке подключения. Система корректно работает только при выключенном питании блока питания. То есть сначала подключаем аккумулятор, когда загорится зеленый светодиод включаем блок питания в сеть.

Автоматический регулятор оборотов вентилятора предназначен для уменьшения уровня шума возникающего в процессе работы блока питания. Стабилизатор напряжения L7812CV поддерживает постоянное напряжение 12В поступающее на делитель состоящий из терморезистора R8 установленного на радиаторе и подстроечного резистора Р3. Напряжение с делителя поступает на базу транзистора Т3. В процессе работы блока питания от большой нагрузки радиатор нагревается, сопротивление терморезистора R8 установленного в радиаторе становится меньше сопротивления подстроечного резистора Р3, напряжение на базе транзистора увеличивается и транзистор приоткрывается, тем самым увеличивая скорость вращения вентилятора. Настройка чувствительности регулятора осуществляется подстроечным резистором Р3.

В данной схеме регулируемого блока питания имеется возможность подключения разных моделей вольтметров и амперметров, стрелочных и электронных. С аналоговой классикой обозначенной на схеме буквами V вольтметр и A амперметр все понятно подключаем согласно схеме. Амперметр лучше покупать со встроенным шунтом, так гораздо компактней и дешевле. Класс точности вольтметра и амперметра с Али Экспресс должен быть 2.5 эти приборы работают нормально. А вот с китайскими электронными придется повозиться. На данный момент существует две модели китайских универсальных измерительных приборов (КУИП). Первая модель с синим проводом со встроенным шунтом более точная менее глючная, в последнее время её трудно найти на Али Экспресс. Вторая модель с желтым проводом и встроенным шунтом не точная и очень глючная с прыгающими показаниями амперметра от 0 до 0.25А на холостом ходу без нагрузки. Не понятно зачем её вообще продают? Если вы будете ставить электронный КУИП, тогда надо разорвать участок электрической цепи отмеченный на схеме красным крестиком. По другому в данной схеме электронный КУИП работать правильно не будет .

А эта схема для тех, кто любит мощные блоки питания. Как и обещал до 25А.

Схема блока питания с регулировкой напряжения и тока 1.2…30В 25А

В схему добавлен дополнительный мощный транзистор Т2 TIP35C способный выдерживать ток до 25А и резистор R3 200 Ом. Диодный мост заменен на более мощный. Транзистор IRFP250 выдерживает 30А, а транзистор IRFP260 49А.

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 10А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 10А

На этом рисунке изображена печатная плата блока питания с регулировкой напряжения и тока на 25А.

Печатная плата блока питания с регулировкой напряжения и тока 1.2…30В 25А

Стабилизатор напряжения LM317, транзисторы TIP35C, IRFP250, 260 устанавливаем на радиатор через изолирующие термопрокладки и термошайбы. Транзистор MJE13009 устанавливаем на радиатор без изоляции, иначе от сильного нагрева и плохого отвода тепла через термопрокладку будет перегреваться и выходить из строя. Стабилизатор напряжения L7812CV и транзистор BD139 устанавливаем на разные радиаторы. Терморезистор вставляем в просверленное в радиаторе отверстие и закрепляем с помощью Поксипола или Эпоксидной смолы. В процессе установки терморезистора проверяйте мультиметром отсутствие электрического контакта, между терморезистором и радиатором. Переменные резисторы, а также светодиоды при необходимости можно соединить проводами и вынести за пределы платы.

Готовый блок питания начинает работать сразу после подачи питания на плату. Единственное что надо настроить, так это скорость вращения вентилятора. Для этого надо при холодном радиаторе с помощью подстроечного резистора Р3 выставить напряжение на вентиляторе примерно 1 вольт. Вентилятор начнет вращаться при температуре радиатора примерно 45 градусов, обороты будут подниматься прямо пропорционально температуре радиатора. При охлаждении радиатора обороты вентилятора будут снижаться. Так работает автоматический регулятор оборотов вентилятора.

Как же пользоваться блоком питания?
Очень просто. Включаем питание и выставляем регулируемым резистором Р1 нужное вам напряжение. Ручку регулируемого резистора Р2 ставим в крайнее правое положение соответствующее максимальной силе тока. Подключаем нагрузку к блоку питания, при необходимости добавляем напряжение. Если надо резистором Р2 можно ограничить ток.

Как заряжать аккумулятор?
Легко! При подключении аккумулятора блок питания должен быть выключен из сети. Ставим ручки резисторов Р1 и Р2 в крайнее левое положение, минимальное напряжение и минимальный ток. Подключаем аккумулятор к блоку питания. Должен загореться зеленый светодиод, это означает что аккумулятор подключен правильно. В случае ошибки подключения загорится красный светодиод. После того, как вы убедились в правильности подключения аккумулятора, включите блок питания в сеть. Переменным резистором Р1 установите напряжение 14.5В. Далее резистором Р2 установите силу тока равную 10% от емкости аккумулятора, то есть для 60А/ч батареи начальный ток должен быть не более 6А.

После установки силы тока произойдет падение напряжения примерно до 13В. По мере заряда аккумулятора напряжение будет постепенно подниматься до 14.5В, а сила тока будет снижаться до 0.1А это будет означать, что батарея полностью заряжена.

Что будет с блоком питания в случае короткого замыкания?
Ничего страшного не произойдет. В случае короткого замыкания сработает защита ограничения тока. Согласно закону Ома: чем больше сопротивление цепи, тем меньше сила тока будет в нем. Следовательно при коротком замыкании будет максимально возможный ток. Напряжение упадет, а сила тока будет той, которую вы ограничили резистором Р2.

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 10А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 IRFP250, IRFP260, T3 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2 200R 0.25W, R3 1K 5W, R4 100R 0.25W, R5 47R 0.25W, R6 0.1R 20W, R7 3K 0.25W
  • Терморезистор R8 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Радиодетали для сборки блока питания с регулировкой напряжения и тока на 25А

  • Диодный мост KBPC2510, KBPC3510, KBPC5010
  • Конденсатор С1 4700mf 50V
  • Регулируемый стабилизатор напряжения LM317
  • Транзисторы Т1 MJE13009, T2 TIP35C, T3 IRFP250, IRFP260, T4 КТ815, BD139
  • Переменные резисторы Р1 5К, Р2 1К, Р3 10К
  • Стабилитрон 12V 5W 1N5349BRLG
  • Резисторы R1, R2, R3 200R 0.25W, R4 1K 5W, R5 100R 0.25W, R6 47R 0.25W, R7 0.1R 20W, R8 3K 0.25W
  • Терморезистор R9 B57164-K 103-J сопротивление 10К
  • Светодиоды 5мм красный и зеленый, напряжение питания 3В
  • Радиатор 100х63х33 мм 1шт, радиатор KG-487-17 (HS 077-30) 2шт
  • Вентилятор 70х70 мм

Друзья, желаю вам удачи и хорошего настроения! До встречи в новых статьях!

Рекомендую посмотреть видеоролик о том, как сделать блок питания с регулировкой напряжения и тока

Читайте также:  Десульфататор АКБ из хлама


Приставка-регулятор к блоку питания

Защитная приставка к блоку питания

Часто радиолюбители питают ремонтируемые или налаживаемые устройства от мощных блоков питания, применяемых, например, для питания трансиверов. Риск выхода из строя этих устройств достаточно высок, так как в случае чего, маломощные устройства выходят из строя при токах гораздо меньших, чем ток срабатывания защиты мощного блока питания (20-30 А). К тому же мощные блоки питания низкой и средней ценовой категории (EPS-2022, PS-1220, ECV-1822, GSV-3000, Волна ББП-10/20 и т.п.) или радиолюбительские [1-3] имеют только электронную схему защиты, которая не спасает питаемые устройства в случае неисправности стабилизатора или пробоя регулирующих транзисторов. Во всех этих случаях предлагаемая защитная приставка к блоку питания позволит с высокой степенью вероятности избежать неприятных последствий, связанных с токовыми перегрузками питаемых устройств.

Приставка представляет собой релейный предохранитель с регулируемым в широком диапазоне током срабатывания. Приставка имеет простую схему, не содержит дефицитных и дорогостоящих компонентов, имеет малое падение напряжения (менее 0,01В) . Принципиальная схема приставки приведена на рис.1.

Основой приставки является двухобмоточное реле К1, в качестве которого используется доработанное герконовое реле РЭС-55. Доработка заключается в изготовлении дополнительной обмотки В-Г, включаемой в цепь нагрузки. Если включить обмотки А-Б и В-Г так, чтобы магнитные поля, создаваемые протекающими по ним токами, суммировались, то, изменяя подмагничивающий ток в обмотке А-Б , можно регулировать ток срабатывания реле К1 по обмотке В-Г, т.е. ток срабатывания защиты.

Ток срабатывания приставки определяется сопротивлением резисторов R2 –R12 и устанавливается переключателем SA1. При срабатывании реле К1 замыкаются его контакты К1.1 и оно самоблокируется через диод VD2. При этом срабатывает силовое реле К2 и своими контактами К2.1 разрывает цепь нагрузки. Светодиод HL1 красного цвета и зуммер НА1 сигнализируют о срабатывании защиты. Возврат приставки в рабочее состояние после устранения причины перегрузки происходит после кратковременного нажатия кнопки SB1 “Сброс”. Вольтметр PV1 полезно установить, если блок питания не имеет встроенного вольтметра. Если блок питания используется только для питания трансивера, токозадающий узел (ниже точки А) можно выполнить по схеме, приведенной на рис 2.

На ней резистор R2 определяет ток срабатывания защиты в режиме “ТХ”, когда транзистор VT1 заперт сигналом “TX’ нулевого уровня. В режиме “RX” транзистор VT1 подключает параллельно резистору R2 резистор R3, снижая тем самым ток срабатывания защиты. Токозадающие узлы можно использовать и совместно, если установить переключатель в точку А.

В качестве реле К1 автором применено реле РЭС-55 с сопротивлением обмотки 2000 ом (27В,паспорт РС4.569.626). Фактическое напряжение срабатывания этого реле составило10,5 В. Подойдут и реле с сопротивлением обмотки 400 Ом(12В), но при этом параметры дополнительной обмотки и токозадающих резисторов будут другими и последовательно с реле, возможно, потребуется включение токоограничительного резистора.

Дополнительная обмотка В-Г наматывается на корпус реле. Предварительно вывод корпуса удаляется и корпус реле обматывается одним слоем изоленты. При выборе диаметра провода следует ориентироваться на плотность тока 10 А/кв.мм. Обмотка фиксируется термоусадочной трубкой или клеем. У автора обмотка содержит 14 витков провода ПЭВ диаметром 1,4 мм. При этом ток срабатывания реле по дополнительной обмотке составил около 23 А. Обмотку следует намотать, как показано на рис. 3 и включить обмотки, как показано на схеме ( рис.1). В этом случае магнитные поля обмоток будут суммироваться. Реле К2 может быть любым, способным коммутировать максимальный ток блока питания и устойчиво срабатывающим от минимального входного напряжения. Автор применяет автомобильное реле 90.3747-01 (12В, 30А). Резисторы, светодиод, зуммер НА1, вольтметр – любого типа. Диоды VD1-VD3 – любые маломощные кремниевые. В качестве переключателя SA1 может быть применен любой галетный переключатель на достаточное количество положений. Автор применил переключатель ПГ-3 на 11 положений: 0,5; 1; 2; 3; 4; 6; 9; 12; 15; 18; 21А. При этом диапазон сопротивлений токозадающих резисторов R2-R12 составил 0,3 – 9 кОм. При невысоких требованиях к точности срабатывания узел SA1, R2-R12 может быть заменен переменным резистором (лучше проволочным, например, ПП3-45).

Конструкция приставки зависит только от возможностей и фантазии радиолюбителя. Автор разместил приставку в прямоугольном металлическом корпусе размерами 180х90х80 мм. На передней панели размещены входные и выходные гнезда, переключатель тока защиты SA1, светодиод HL1, вольтметр PV1, кнопка “Сброс”. Монтаж элементов навесной. Входные гнезда приставки соединяются с выходными гнездами блока питания EPS-2022 короткими проводами сечением 2,5 кв.мм. Приставка также может быть встроена в любой блок питания, например, как сделано в [4 ].

Настройку приставки можно начать сразу же после намотки дополнительной обмотки В-Г на всю длину корпуса реле. Для настройки собирают схему ( рис.4). Используемые при настройке блок питания и амперметр PA1 должны быть рассчитаны на ток, несколько превышающий максимальный ток срабатывания приставки.

Реостат (реостаты) R2 должен иметь достаточную мощность, диапазон изменения сопротивления должен соответствовать требуемым значениям тока срабатывания защиты. Отсоединяем переменный резистор R1 от вывода Б основной обмотки реле. Плавно уменьшая сопротивление реостата R2, увеличиваем ток нагрузки. По амперметру фиксируем ток в момент срабатывания реле (определяется по омметру, подключенному к контактам 2-3 реле). Если ток срабатывания реле меньше требуемого, отматываем от обмотки по витку (части витка) до получения необходимого максимального тока срабатывания. Если ток срабатывания реле (как у автора) несколько больше требуемого, подключаем резистор R1 к выводу Б основной обмотки, устанавливаем реостатом требуемый максимальный ток срабатывания защиты, и, уменьшая сопротивление резистора R1 от максимального, добиваемся срабатывания реле. Отсоединяем переменный резистор от вывода Б обмотки реле и цифровым омметром измеряем его сопротивление. Эту же операцию проделываем для всех необходимых значений тока срабатывания. Затем подбираем постоянные резисторы, соответствующие измеренным значениям. Если подобрать сопротивления резисторов из стандартного ряда сопротивлений невозможно, выбираем резистор с ближайшим меньшим сопротивлением и, подтачивая мелкой наждачной бумагой резистивный слой, добиваемся нужного сопротивления.

При настройке схемы (рис.2) подаем на вход “TX” сигнал нулевого уровня (корпус). Резистор R2 заменяем переменным и в соответствии с вышеизложенной методикой устанавливаем ток срабатывания защиты несколько большим, чем максимальный ток, потребляемый трансивером в режиме “TX”. Затем измеряем сопротивление переменного резистора и заменяем его постоянным. В режиме “RX” заменяем резистор R3 переменным (порядка 1,5 кОм) и устанавливаем ток срабатывания защиты несколько большим, чем максимальный ток, потребляемый трансивером в режиме “RX”.

Если, как предложил Александр, RZ6FE, установить между точкой А и минусом питания стабилитрон с напряжением стабилизации несколько большим, чем номинальное выходное напряжение блока питания, то надежность защиты увеличится, так как появится дополнительная защита от перенапряжения. Стабилитрон может быть любого типа. Разность между напряжением стабилизации стабилитрона и номинальным выходным напряжением блока питания должна быть минимальной и такой , при которой ток через стабилитрон еще отсутствует. Выполнение этих условий позволит обеспечить срабатывание защиты при минимальном перенапряжении и отсутствие влияния стабилитрона на ток срабатывания защиты.

Автор надеется, что при правильном применении предлагаемой приставки радиолюбители будут избавлены от огорчений и материальных потерь, связанных с токовыми перегрузками устройств, питаемых от несовершенных блоков питания.

Надежная приставка к внешнему блоку питания

Многие из нас оказались владельцами законченных блоков питания оставшиеся от маршрутизаторов, внешних жестких дисков, ноутбуков, мониторов, и так далее. Как правило, выходное напряжение из колеблется в диапазоне от 12v до 22v. Надеюсь, эта статья даст Вам идею, как применить подобный блок питания не разбирая его и не вмешиваясь в его заводскую сборку.

Для сборки любительской приставки с плавной регулировкой выходного напряжения нам понадобятся:
– готовый модуль на микросхеме lm2596;
– монтажная коробочка;
– два гнезда внутренним диаметром 5.2 мм;
– потенциометр 10 кОм;
– два постоянных резистора 22 кОм каждый;
– панельный ампервольтметр DSN-VC288.

Статья будет состоять из нескольких законченных частей, в каждой из которых будут подробно описаны шаги, особенности и подводные камни используемых компонентов.

Понижающий DС-DC преобразователь на микросхеме lm2596

Микросхема lm2596, на которой реализован модуль, хороша тем, что имеет защиту от перегрева и защиту от короткого замыкания, но имеет несколько особенностей.

Посмотрите на типовой вариант ее включения, в данном случае, микросхема редакции выходного фиксированного напряжения +5 вольт, но, для сути это не важно:

Поддержание стабильного уровня напряжения, обеспечивается подключением выхода обратной связи четвертой (Feed Back) ножки микросхемы, подключенной непосредственно к выходу стабилизированного напряжения.

В рассматриваемом конкретном модуле, применена редакция микросхемы с изменяемым выходным напряжением, но принцип регулирования выходного напряжения тот же:

К выходу модуля, подключается резистивный делитель R1- R2 с верхним включенным подстроечным резистором R1, вводя сопротивление, которого, выходное напряжение микросхемы можно менять.

В этом модуле R1 = 10 кОм R2 = 0.3 кОм. Плохо то, что регулировка не плавная и осуществляется только на последних 5-6 оборотах подстроечного резистора.

Для осуществления плавной регулировки выходного напряжения, радиолюбители исключают резистор R2, а подстроечный резистор R1 меняют на переменный.

Схема выходит вот такой:

А как раз вот тут, возникает серьезная проблема. Дело в том, в течении эксплуатации переменного резистора, рано или поздно, контакт (его прилегание к резистивной подковке) среднего вывода нарушается и вывод 4 (Feed Back) микросхемы оказывается (пусть и на миллисекунду) в воздухе. Это ведет к мгновенному выходу микросхемы из строя.

Ситуация так же плоха, когда для подсоединения переменного резистора используются проводники – резистор получается выносной – это, так же может способствовать потере контакта. Потому, штатный резистивный делитель R1 и R2 следует выпаять, а вместо него, впаять два постоянных прямо на плате – этим решается проблема потери контакта с переменным резистором при любых случаях. Сам переменный резистор, следует припаять уже к выводам распаянных.

На схеме, R1= 22 kOm и R2=22 kOm, а R3=10kOm.

На реальной схеме. R2 был сопротивлением соответствующим его маркировке , а вот R1 меня удивил, хотя на нем и нанесена маркировка 10k на самом деле, его номинальное сопротивление оказалось 2k. =)

Удалите R2 и поставьте на его месте каплю припоя. Удалите резистор R1 и переверните плату на обратную сторону:

Припаяйте два новых R1 и R2 резистора руководствуясь фотографией. Как видно, будущие проводники переменного резистора R3 будут подключаться к трем точкам делителя.
Всё, отложим модуль в сторону.
На очереди панельный ампертвольметр.

Читайте также:  Бесконтактный ключ

Ампертвольметр DSN-VC288 не годится для сборки лабораторного источника питания, так как минимальный ток, который с его помощью можно измерить составляет 10ma.

Но ампервольтметр отлично подходит для сборки любительской конструкции, а потому, применю я именно его.
Вид с обратной стороны такой:

Обратите внимание на расположение разъемов и доступных регулировочных элементов и особенно на высоту разъема измерения тока:

Поскольку, выбранный мной для этой самоделки корпус не имеет достаточной высоты, то металлические штырьки токового разъема DSN-VC288 мне пришлось скусить, а прилагающиеся толстые проводники – напаять на штырьки непосредственно. Перед пайкой, сделайте на концах проводков по петельке, и насадив каждую на каждый штырек паяйте – для надежности:

Визуальная схема соединения DSN-VC288 и lm2596

Левая часть DSN-VC288:
– черный тонкий провод не подключается ни к чему, изолируете его конец;
– желтый тонкий соедините с плюсовым выходом модуля lm2596 – НАГРУЗКА «ПЛЮС»;
– красный тонкий соедините с плюсовым входом модуля lm2596.

Правая часть DSN-VC288:
– черный толстый соедините с минусовым выходом модуля lm2596;
– красный толстый будет НАГРУЗКА «МИНУС»

Монтажную коробочку я использовал размерами 85 x 58 x 33 mm.:

Нанеся разметку карандашом, диском дремеля, я вырезал окно для DSN-VC288 по размеру внутреннего бортика прибора. При этом, вначале я пропилил диагонали, а за тем, отпиливал отдельные сектора по периметру размеченного прямоугольника. Плоским напильником придется поработать, понемногу подгоняя окно под внутренний бортик DSN-VC288:

На этих фото, крышка не прозрачная. Прозрачную я решил использовать позднее, но это не важно, кроме прозрачности, они абсолютно одинаковые.

Так же, наметьте отверстие под нарезной воротник переменного резистора:

Обратите внимание, что монтажные ушки базовой половины коробочки обрезаны. А на саму микросхему, имеет смысл наклеить небольшой радиатор. У меня под рукой были готовые, но, нетрудно выпилить подобный из радиатора, допустим, старой видеокарты. Подобный я выпиливал для установки на PCH чип ноутбука, ничего сложного =)

Монтажные ушки помешали бы при установке вот таких гнезд 5.2мм:

В итоге, у вас должно получиться именно вот что:
При этом, слева находится входное гнездо, справа – выход:

Подайте питание на приставку и посмотрите на дисплей. В зависимости от положения оси переменного резистора вольты прибор может показывать разные, а вот ток, должен быть по нулям. Если это не так, значит, прибор придется откалибровать. Хотя, я много раз читал, что заводом это уже сделано, и ничего от нас делать не придется, но все-таки.

Но вначале обратите внимание на верхний левый угол платы DSN-VC288, два металлизированных отверстия предназначены для установки прибора на ноль.

Итак, если без нагрузки прибор показывает некий ток, то:
– выключите приставку;
– надежно замкните пинцетом эти два контакта;
– включите приставку;
– удалите пинцет;
– отключите нашу приставку от блока питания, и подключите ее вновь.

Испытания на нагрузку.

Мощного резистора у меня нет, но был кусочек нихромовой спирали:

В холодном состоянии сопротивление составило около 15 ом, в горячем, около 17 ом.
На видео, вы можете посмотреть испытания получившейся приставки как раз на такую нагрузку, ток я сравнивал с образцовым прибором. Блок питания был взят на 12 вольт от давно исчезнувшего ноутбука. Так же на видео виден диапазон регулируемого напряжения на выходе приставки.

Итог.
– приставка не боится короткого замыкания;
– не боится перегрева;
– не боится обрыва цепей регулировочного резистора, при его обрыве, напряжения автоматически падает до безопасного уровня ниже полутора вольт;
– приставка, так же легко выдержит, если вход и выход будут при подключении перепутаны местами – такое случалось;
– применение найдется любому внешнему блоку питания от 7 вольт и до 30 вольт максимум.


Топ 10 регулируемых блоков питания с Aliexpress, а также купоны площадки

Топ 10 регулируемых блоков питания с Aliexpress, а также купоны площадки. В топике представлены интересные и полезные сетевые адаптеры и регулируемые блоки питания для питания различной электроники, устройств и прочей техники. Также присутствуют купоны площадки.

Купоны площадки:

Последняя распродажа года на площадке Aliexpress подходит к концу. Успей купить все что нужно с максимальной скидкой! Купоны площадки периодически стоит проверять ЗДЕСЬ

Сейчас действуют следующие промокоды:

NYSALE3— скидка $3 для заказов от $30
INHNSP41— скидка $8 для заказов от $50

Регулируемый БП 3-12V/3A со скрытым переключателем и USB-выходом:

Ссылка на товар — ЗДЕСЬ

Довольно интересный блок питания со скрытым регулятором напряжения и USB-выходом. Скрытый регулятор позволяет запитывать различные устройства (приставки, роутеры, модемы и ТВ-боксы) без опаски случайного повышения напряжения, как в случае с «барашком». Маленькие дети также не смогут случайно выкрутить напругу на максимум. Качество хорошее, пригодятся в случае поломки штатных.

Регулируемый БП 3-12V/3A с открытым переключателем:

Ссылка на товар — ЗДЕСЬ

Аналог предыдущего, но уже с переключателем на внешней стороне. На выходе можно получить честные 3А, в комплекте несколько видов разъемов, что позволяет использовать этот блок питания взамен сгоревших БП от цифровых приставок, роутеров, модемов и ТВ-боксов. Качество хорошее, в качестве резервного должен быть. На выбор евро и американская вилка.

Регулируемый БП 3-24V/5A:

Ссылка на товар — ЗДЕСЬ

Можно сказать, что это одна из «народных» моделек, отличающаяся компактными размерами и хорошими характеристиками. На странице товара можно выбрать нужный тип вилки и выходные параметры. Я имею в наличие вариант с выходным напряжением 3-12V и максимальной силой тока 5А. Нареканий нет, для быстрого подключения устройств хватает. Присутствует цифровой вольтметр.

Регулируемый DC-DC модуль питания RD6006:

Ссылка на товар — ЗДЕСЬ

Не совсем готовый блок питания, поскольку ему требуется соответствующий БП, но все остальные функции выполняет. Имею такой в наличие, нареканий нет. Эта самая последняя модель с выходом 60V и током отдачи до 6А. Появилась сравнительно недавно, но уже сумела завоевать популярность, так как имеет понятный интерфейс и интересные функции. Рекомендую!

Регулируемый БП 0-220V/0-60A:

Ссылка на товар — ЗДЕСЬ

Новые блоки питания с регулировкой в широких пределах. Выполнены в стандартном корпусе и позволяют легко регулировать напряжение на выходе. Для контроля напряжения имеют встроенный вольтметр. Этакий сверхдешевый вариант регулируемого БП, кому не требуется стабилизация (ограничение) тока aka режим CC. Можно запитывать инструмент, если сила тока позволяет.

Регулируемый БП 30V/10A Wanptek LW-K3010D:

Ссылка на товар — ЗДЕСЬ

Хороший и недорогой блок питания. В сети можно найти десятки обзоров на него, качество хорошее. По габаритам чуть больше знаменитых БП Gophert. Управление очень простое, два регулятора позволяют работать блоку питания в режиме CC или CV, т.е. со стабилизацией тока или напряжения. Не имеет ячеек памяти, т.е. самый базовый вариант, но зато недорого.

Регулируемый блок питания GOPHERT NPS-1601 (30V/5A):

Ссылка на товар — ЗДЕСЬ

Еще один «народный» блок питания. Качественный, надежный, недорогой и неубиваемый — это все GOPHERT. Это новая модель, лишенная некоторых мелких «граблей», таких как выходные разъемы на задней крышке (они тут спереди), бОльшая разрядность вольтметра/амперметра и многое другое. Я уже который год имею модель CPS-3010, полет отличный. Рекомендую!

Лабораторный блок питания KORAD KA3005D (30V/5A):

Ссылка на товар — ЗДЕСЬ

Еще один проверенный временем вариант, но уже в виде лабораторного источника питания, т.е. на основе понижающего трансформатора с памятью и другими режимами. По идее схемотехника выполнена не на основе ШИМ-модуляции и пульсации минимальны. Более габаритный и тяжелый, но это особенность всех линейных блоков питания.

Как сделать простой регулятор напряжения своими руками

В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.

Описание устройства

Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.

Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.

Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.

Разновидности приборов

По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.

При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:

  • резисторы;
  • тиристоры или транзисторы;
  • цифровые или аналоговые интегральные микросхемы.

Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.

Характеристика регулятора

По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.

Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.

К основным характеристикам устройств относят следующие параметры:

  1. Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
  2. Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
  3. Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
  4. Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
  5. Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
  6. Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
  7. Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
  8. Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.
Читайте также:  Надежный лабораторный блок питания

Особенности изготовления

Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.

Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.

Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:

  • паяльник;
  • мультиметр;
  • припой;
  • пинцет;
  • кусачки;
  • флюс;
  • технический спирт;
  • соединительные медные провода.

Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.

Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.

При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.

Простые схемы

Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).

Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.

При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.

Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.

Симисторный вид

Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.

Для сборки схемы понадобится:

НаименованиеНоминалАналог
Резистор R1470 кОм
Резистор R210 кОм
Конденсатор С10,1 мкФ х. 400 В
Диод D11N40071SR35–1000A
Светодиод D2BL-B2134GBL-B4541Q
Динистор DN1DB3HT-32
Симистор DN2BT136КУ 208

Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.

Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.

Реле напряжения

Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.

Собранная схема своими руками реле-регулятора напряжения должна:

  • работать в широком диапазоне температур;
  • выдерживать скачки напряжения;
  • иметь возможность отключения во время запуска мотора;
  • обладать малым падением разности потенциалов.

Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.

Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.

Управляемый блок питания

Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.

Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.

Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.

Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.


РЕГУЛИРУЕМЫЙ БЛОК ПИТАНИЯ С ЗАЩИТОЙ

У каждого радиолюбителя, регулярно занимающегося конструированием электронных устройств, думаю, имеется дома регулируемый блок питания. Штука действительно удобная и полезная, без которого, испробовав его в действии, обходиться становится трудно. Действительно, нужно ли нам проверить, например светодиод, то потребуется точно выставлять его рабочее напряжение, так как при значительном превышении подаваемого напряжения на светодиод, последний может просто сгореть. Также и с цифровыми схемами, выставляем выходное напряжение по мультиметру 5 вольт, или любое другое нужное нам и вперед.

Многие начинающие радиолюбители, сначала собирают простой регулируемый блок питания, без регулировки выходного тока и защиты от короткого замыкания. Так было и со мной, лет 5 назад собрал простой БП с регулировкой только выходного напряжения от 0,6 до 11 вольт. Его схема приведена на рисунке ниже:

Но несколько месяцев назад решил провести апгрейд этого блока питания и дополнить его схему небольшой схемкой защиты от короткого замыкания. Эту схему нашел в одном из номеров журнала Радио. При более детальном изучении выяснилось, что схема во многом напоминает приведенную выше принципиальную схему, собранного мной ранее блока питания. При коротком замыкании в питаемой схеме светодиод индикации КЗ гаснет, сигнализируя об этом, и выходной ток становится равен 30 миллиампер. Было решено, взяв часть этой схемы дополнить свою, что и сделал. Оригинал, схему из журнала Радио, в которую входит дополнение, привожу на рисунке ниже:

На следующем рисунке показывается часть этой схемы, которую нужно будет собрать.

Номинал некоторых деталей, в частности резисторов R1 и R2, нужно пересчитать в сторону увеличения. Если у кого-то остались вопросы, куда подсоединять выходящие провода с этой схемы, приведу следующий рисунок:

Еще дополню, что в собираемой схеме, вне зависимости, будет это первая схема, или схема из журнала Радио необходимо поставить на выходе, между плюсом и минусом резистор 1 кОм. На схеме из журнала Радио это резистор R6. Дальше осталось протравить плату и собрать все вместе в корпусе блока питания. Зеркалить платы в программе Sprint Layout не нужно. Рисунок печатной платы защиты от короткого замыкания:

Примерно месяц назад мне попалась на глаза схема приставки регулятора выходного тока, которую можно было использовать совместно с этим блоком питания. Схему взял с этого сайта. Тогда собрал эту приставку в отдельном корпусе и решил подключать её по мере необходимости для зарядки аккумуляторов и тому подобных действий, где важен контроль выходного тока. Привожу схему приставки, транзистор кт3107 в ней заменил на кт361.

Но впоследствии пришла в голову мысль соединить, для удобства, все это в одном корпусе. Открыл корпус блока питания и посмотрел, места осталось маловато, переменный резистор не поместится. В схеме регулятора тока используется мощный переменный резистор, имеющий довольно большие габариты. Вот как он выглядит:

Тогда решил просто соединить оба корпуса на винты, сделав соединение между платами проводами. Также поставил тумблер на два положения: выход с регулируемым током и нерегулируемым. В первом случае, выход с основной платы блока питания соединялся с входом регулятора тока, а выход регулятора тока шел на зажимы на корпусе блока питания, а во втором случае, зажимы соединялись напрямую с выходом с основной платы блока питания. Коммутировалось все это шести контактным тумблером на 2 положения. Привожу рисунок печатной платы регулятора тока:

На рисунке печатной платы, R3.1 и R3.3 обозначены выводы переменного резистора первый и третий, считая слева. Если кто-то захочет повторить, привожу схему подключения тумблера для коммутации:

Печатные платы блока питания, схемы защиты и схемы регулировки тока прикрепил в архиве. Материал подготовил AKV.

Ссылка на основную публикацию