Простейший регулятор яркости светодиодов

Вся правда о регулировке яркости светодиодных ламп: диммеры, драйверы и теория

Регулировка яркости источников света применяется, для создания комфортной освещенности помещения или рабочего места. Регулировка яркости возможна устройство нескольких цепей, которые включаются отдельными выключателями. В таком случае вы получите ступенчатое изменение освещенности, а также отдельные светящиеся и выключенные лампы, что может вызвать неудобства.

Стильные и актуальные дизайнерские решения включают в себя плавную регулировку общей освещенности при условии свечения всех ламп. Это позволяет создать как интимную обстановку для отдыха, так и яркую для торжеств или работы с мелкими деталями.

Ранее, когда основными источниками света были лампы накаливания и точечные светильники с галогенными лампами проблем с регулировкой не возникало. Использовался обычный 220В диммер на симисторе (или тиристорах). Который обычно был в виде выключателя, с поворотной ручкой вместо клавиш.

С приходом энергосберегающих (компактных люминесцентных ламп), а потом и светодиодных такой подход стал невозможен. В последнее же время подавляющее большинство источников света – это светодиодные светильники и лампочки, а лампы накаливания запрещены для использования в осветительных целях во многих странах.

Занятно то, что на упаковке от отечественных ламп накаливания сейчас указывают что-то вроде: «Электрический теплоизлучатель».

В этой статье вы узнаете о принципе регулирования яркости светодиодов, а также о том, как это выглядит на практике.

Теория

Любой полупроводниковый диод – это электронный прибор, который пропускает ток в одном направлении. При этом протекание тока не имеет линейно зависимости от приложенного напряжения, скорее она напоминает ветвь параболы. Это значит, что когда вы к светодиоду приложите малое напряжение – ток протекать не будет.

Ток через него протечет только в том случае, когда напряжение на диоде превысит пороговое значение. Для обычных выпрямительных диодов оно лежит в пределах от 0.3В до 0.8В в зависимости от материала из которого сделан диод. Кремниевые диоды берут на себя около 0.7В, германиевые 0.3В. Диоды Шоттки порядка 0.3В.

Светодиод не стал исключением. Пороговое напряжение белого светодиода около 3В, вообще оно зависит от полупроводника из которого он сделан, от этого зависит и цвет его свечения. Так, на красном светодиоде напряжение около 1.7 В. При достижении этого напряжения начнет протекать ток, и светодиод начнет светиться. Ниже вы видите вольтамперную характеристику светодиода.

Яркость свечения светодиода зависит от силы тока через него. Это отражено на графике ниже.

Яркость идеального теоретического светодиода линейно зависит от тока, но в реальности дела несколько отличаются. Это связано с дифференциальным сопротивлением диода и его тепловыми потерями.

Светодиод – прибор, который питается током, а не напряжением. Соответственно, для регулировки его яркости нужно изменять силу тока.

Разумеется, что сила тока зависит от приложенного напряжения, но как вы можете судить из первого графика, даже незначительное изменение напряжения влечет за собой несоизмеримое увеличение тока.

Поэтому регулирование яркости с помощью простого реостата – занятие бесполезное. В такой схеме, при уменьшении сопротивления реостата светодиод внезапно загорится, а после его яркость незначительно возрастет, далее, при чрезмерном приложенном напряжении, он начнет сильно греется и выйдет из строя.

Отсюда выходит задание: Регулировать ток при определенном значении напряжения с незначительным его изменением.

Способы регулирования яркости светодиодов: линейные «аналоговые» регуляторы

Первое что приходит в голову это использовать биполярный транзистор, ведь его выходной ток (коллектора) зависит от входного тока (базы), включенного по схеме общего коллектора. Мы уже рассматривали их работу в большой статье о биполярных транзисторах.

Вы изменяете ток базы изменяя падение напряжения на переходе эмиттер-база с помощью потенциометра R2, резисторы R1 и R3 нужны для ограничения тока при максимально открытом транзисторе рассчитываются исходя из формулы:

R=(Uпитания-Uпадения на светодиодах-Uпадения на транзисторе)/Iсвет.ном.

Эту схему я проверял, она неплохо регулирует ток через светодиоды и яркость свечения, но заметна некоторая ступенчатость на определенных положениях потенциометра, возможно это связано с тем, что потенциометр был логарифмическим, а возможно из-за того что любой pn-переход транзистора это тот же диод с такой же ВАХ.

Лучше для этой задачи подойдет схема стабилизатора тока на регулируемом стабилизаторе LM317, хотя её чаще применяют в роли стабилизатора напряжения.

Её можно и использовать для получения фиксированного тока при постоянном напряжении. Это особенно полезно при подключении светодиодов к бортовой сети автомобиля, где напряжение в сети при заглушенном двигателе около 11.7-12В, а при заведенном доходит до 14.7В, разница более чем в 10%. Также отлично работает и при питании от блока питания.

Расчёт выходного тока достаточно прост:

Получается достаточно компактное решение:

Этот способ не отличается высоким КПД, он зависит от разницы напряжений между входом стабилизатора и его выходом. Всё напряжение «сгорает» на LM-ке. Потери мощности здесь определяются по формуле:

Чтобы повысить эффективность работы регулятора, нужен кардинально другой подход – импульсный регулятор или ШИМ-регулятор.

Способы регулирования яркости: ШИМ-регулировка

ШИМ расшифровывается, как «широтно-импульсная модуляция». В её основе лежит включение и выключение питания нагрузки на высокой скорости. Таким образом, мы получаем изменение тока через светодиод, поскольку каждый раз на него подается полное напряжение, необходимое для его открытия. Он быстро включается и отключается на полную яркость, но из-за инерционности зрения мы этого не замечаем и это выглядит как снижение яркости.

При таком подходе источник света может выдавать пульсации, не рекомендуется использовать источники света с пульсациями более 10%. Подробные значения для каждого вида помещений описаны в СНИП-23-05-95 (или 2010).

Работа под пульсирующим светом вызывает повышенную утомляемость, головные боли, а также может вызвать стробоскопический эффект, когда вращающиеся детали кажутся неподвижными. Это недопустимо при работе на токарных станках, с дрелями и прочим.

Схем и вариантов исполнения ШИМ-регуляторов великое множество, поэтому все их перечислять бессмысленно. Простейший вариант – это собрать ШИМ-контроллер на базе микросхемы-таймера NE555. Это популярная микросхема. Ниже вы видите схему такого светодиодного диммера:

А вот фактически это одна и та же схема, разница в том, что здесь исключен силовой транзистор и она подходит для регулировки 1-2 маломощных светодиодов с током в пару десятков миллиампер. Также из неё исключен стабилизатор напряжения для 555-микросхемы.

Как регулировать яркость светодиодных ламп на 220В

Ответ на этот вопрос простой: обычные светодиодные лампы практически не регулируются – т.е. никак. Для этого продаются специальные диммируемые светодиодные лампы, об этом написано на упаковке или нарисован значок диммера.

Пожалуй, самый широкий модельный ряд диммируемых светодиодных ламп представлен у фирмы GAUSS – разных форм, исполнений и цоколей.

Почему нельзя диммировать светодиодные лампы 220В

Дело в том, что схема питания обычных светодиодных ламп построена либо на базе балластного (конденсаторного) блока питания. Либо на схеме простейшего импульсного понижающего преобразователя первого рода. 220В диммеры в свою очередь просто регулируют действующее значение напряжения.

Различают такие диммеры по фронту работы:

Читайте также:  Металлоискатель из радиоприемника и калькулятора.

1. Диммеры срезающие передний фронт полуволны (leading edge). Именно такие схемы чаще всего встречаются в бытовых регуляторах. Вот график их выходного напряжения:

2. Диммеры срезающие задний фронт полуволны (Falling Edge). Различные источники утверждают, что такие регуляторы лучше работают как с обычными, так и с диммируемыми светодиодными лампами. Но встречаются они гораздо реже.

Обычные светодиодные лампы практически не будут изменять яркость с таким диммером, к тому же это может ускорить их выход из строя. Эффект такой же, как и в схеме с реостатом, приведенной в предыдущем разделе статьи.

Стоит отметить, что большинство дешевых регулируемых LED-ламп ведут себя точно также, как и обычные, а стоят дороже.

Регулировка яркости светодиодных ламп – рациональное решение 12В

Светодиодные лампы на 12В широко распространены в цоколях для точечных светильников, например G4, GX57, G5.3 и другие. Дело в том, что зачастую в этих лампах отсутствует схема питания как таковая. Хотя в некоторых установлен на входе диодный мост и фильтрующий конденсатор, но это не влияет на возможность регулирования.

Это значит, что можно регулировать такие лампочки с помощью ШИМ-регулятора.

Таким же образом, как и регулируют яркость LED-ленты. Простейший вариант регулятора, вот такой вот на проводках, в магазинах они обычно называются как: «12-24В диммер для светодиодной ленты».

Они выдерживают, в зависимости от модели, порядка 10 Ампер. Если вам нужно использовать в красивой форме, т.е. встроить вместо обычного выключателя, то в продаже можно найти такие сенсорные 12В диммеры, или варианты с вращающейся ручкой.

Вот пример использования такого решения:

Ранее применялись галогеновые лампы на 12В их питали от электронных трансформаторов, и это было отличным решением. 12 вольт – это безопасное напряжение. Чтобы запитать эти лампы на 12В электронный трансформатор не подойдет, нужен блок питания для светодиодных лент. В принципе, переделка освещения с галогеновых на светодиодные лампы в этом и заключается.

Заключение

Самым разумным решением регулирования яркости светодиодного освещения является использовании 12В ламп или светодиодных лент. При понижении яркости возможно мерцание света, для этого можно попробовать использовать другой драйвер, а если вы делаете шим-регулятор своими руками – увеличить частоту ШИМ.

Принцип регулировки яркости светодиодов

Если упустить подробности и объяснения, то схема регулировки яркости светодиодов предстанет в самом простом виде. Такое управление отлично от метода ШИМ, который мы рассмотрим чуть позже.
Итак, элементарный регулятор будет включать в себя всего четыре элемента:

  • блок питания;
  • стабилизатор;
  • переменный резистор;
  • непосредственно лампочка.

И резистор, и стабилизатор можно купить в любом радиомагазине. Подключаются они точно так, как показано на схеме. Отличия могут заключаться в индивидуальных параметрах каждого элемента и в способе соединения стабилизатора и резистора (проводами или пайкой напрямую).

Собрав своими руками такую схему за несколько минут, вы сможете убедиться, что меняя сопротивление, то есть, вращая ручку резистора, вы будете осуществлять регулировку яркости лампы.

В показательном примере аккумулятор берут на 12 Вольт, резистор на 1 кОм, а стабилизатор используют на самой распространенной микросхеме Lm317. Схема хороша тем, что помогает нам сделать первые шаги в радиоэлектронике. Это аналоговый способ управления яркость. Однако он не подойдет для приборов, требующих более тонкой регулировки.

Необходимость в регуляторах яркости

Теперь разберем вопрос немного подробнее, узнаем, зачем нужна регулировка яркости, и как можно по-другому управлять яркостью светодиодов.

  • Самый известный случай, когда необходим регулятор яркости для нескольких светодиодов, связан с освещением жилого помещения. Мы привыкли управлять яркостью света: делать его мягче в вечернее время, включать на всю мощность во время работы, подсвечивать отдельные предметы и участки комнаты.
  • Регулировать яркость необходимо и в более сложных приборах, таких как мониторы телевизоров и ноутбуков. Без нее не обходятся автомобильные фары и карманные фонарики.
  • Регулировка яркости позволяет экономить нам электроэнергию, если речь идет о мощных потребителях.
  • Зная правила регулировки, можно создать автоматическое или дистанционное управление светом, что очень удобно.

В некоторых приборах просто уменьшать значение тока, увеличивая сопротивление, нельзя, поскольку это может привести к изменению белого цвета на зеленоватый. К тому же увеличение сопротивления приводит к нежелательному повышенному выделению тепла.

ШИМ управление

Выходом из, казалось бы, сложной ситуации стало ШИМ управление (широтно-импульсная модуляция). Ток на светодиод подается импульсами. Причем значение его либо ноль, либо номинальное – самое оптимальное для свечения. Получается, что светодиод периодически то загорается, то гаснет. Чем больше время свечении, тем ярче, как нам кажется, светит лампа. Чем меньше время свечения, тем лампочка светит тусклее. В этом и состоит принцип ШИМ.

Управлять яркими светодиодами и светодиодными лентами можно непосредственно с помощью мощных МОП-транзисторов или, как их еще называют, MOSFET. Если же требуется управлять одной-двумя маломощными светодиодными лампочками, то в роли ключей используют обычные биполярные транзисторы или подсоединяют светодиоды напрямую к выходам микросхемы.

Вращая ручку реостата R2, мы будет регулировать яркость свечения светодиодов. Здесь представлены светодиодные ленты (3 шт.), которые присоединили к одному источнику питания.

Зная теорию, можно собрать схему ШИМ устройства самостоятельно, не прибегая к готовым стабилизаторам и диммерам. Например, такую, как предлагается на просторах интернета.

NE555 – это и есть генератор импульсов, в котором все временные характеристики стабильны. IRFZ44N – тот самый мощный транзистор, способный управлять нагрузкой высокой мощности. Конденсаторы задают частоту импульсов, а к клеммам «выход» подсоединятся нагрузка.

Поскольку светодиод обладает малой инертностью, то есть, очень быстро загорается и гаснет, то метод ШИМ регулирования является оптимальным для него.

Готовые к использованию регуляторы яркости

Регулятор, который продается в готовом виде для светодиодных ламп, называются диммером. Частота импульсов, создавая им, достаточно велика для того, чтобы мы не чувствовали мерцания. Благодаря ШИМ контролеру осуществляется плавная регулировка, позволяющая добиваться максимальной яркости свечения или угасания лампы.

Встраивая такой диммер в стену, можно пользоваться им, как обычным выключателем. Для исключительно удобства регулятор яркости светодиодов может управляться радио пультом.

Способность ламп, созданных на основе светодиодов, менять свою яркость открывает большие возможности для проведения световых шоу, создания красивой уличной подсветки. Да и обычным карманным фонариком становится значительно удобнее пользоваться, если есть возможность регулировать интенсивность его свечения.

Простейший регулятор яркости светодиодов

ОПЕРАТИВНАЯ ДОСТАВКА ПО РОССИИ И ЗАРУБЕЖЬЮ

Ассортимент

Последние комментарии:

H11-6CREE

H11-6CREE

H11-6EPISTAR

Изменение яркости светодиодов или Контроллер своими руками

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи “Светодиоды для авто своими руками”.

Сегодня мы постараемся сделать контроллер, который будет регулировать яркость светодиода. Материалы для данного теста были взяты с сайта led22.ru из статьи “Светодиоды для авто своими руками”. 2 основные детали, используемые в даннном эксперименте – стабилизатор тока LM317 и переменный резистор. Их можно увидеть на фотографии ниже. Отличие нашего эксперимента от приведенного в оригинальной статье – мы так и оcтавили переменный резистор для регулироваки света светодиода. В магазине радиодеталей (не самом дешевом, но всем очень известном) мы приобрели данные детали за 120 рублей (стабилизатор – 30р, резистор – 90р). Здесь хочется отметить, что резистор российского производства “тембр”, обладающий максимальным сопротивлением в 1кОм.

Читайте также:  Очень простая самодельная антенна DVB-T2 с усилителем

Схема подключения: на правую ножку стабилизатора тока LM317 подается “плюс” от блока питания 12V. К левой и средней ножкам поключается резистор переменного тока. Так же, к левой ножке подключается плюсовая ножка светодиода. Минусовой провод от блока питания подключается к минусовой ножке светодиода.

Получается, что ток, проходя через Lm317, уменьшается до величины, заданной сопротивлением переменного резистора.

На практике решено было припаять стабилизатор прямо на резистор. Сделано это в первую очередь для отведения тепла от стабилизатора. Теперь он будет нагреваться вместе с резистором. На резисторе у нас расположено 3 контакта. Мы используем центральный и крайний. Какой имеено крайний использовать – для нас не важно. В зависимости от выбора, в одном случае при повороте ручки по часовой стрелке яркость будет увеличиваться, в противоположном случае – уменьшаться. Если подключить крайние контакты, сопротивление будет постоянно 1 кОм.

Припаиваем провода, как на схеме. К коричневому проводу будет подходить “плюс” от блока питания, синий – “плюс” к светодиоду. При пайке специально оставляем побольше олова, чтобы была лучше теплопередача.

И напоследок одеваем термоусадку, чтобы исключить возможность короткого замыкания. Теперь можно пробовать.

Для первого теста мы используем светодиоды:

1) Epistar 1W, рабочее напряжение – 4V (в нижней части следующей фотографии).

2) Плоский диод с тремя чипами, рабочее напряжение – 9V (в верхней части следующей фотографии).

Результаты (можно увидеть в следующем ролике) не могут не радовать: ни один диод не сгорел, яркость регулируется плавно от минимума до максимума. Для питания полупроводника основное значение имеет ток питания, а не напряжение (ток растет экспоненциально относительно напряжения, при повышении напряжения резко повышается вероятность “сжечь” светодиод.

После чего проводится тест со светодиодными модулями на 12V. И на них наш контроллер отрабатывает без проблем. Именно этого мы и добивались.

Схема ШИМ-регулятора яркости светодиодов для сборки своими руками

С микросхемой NE555 (аналог КР1006) знаком каждый радиолюбитель. Её универсальность позволяет конструировать самые разнообразные самоделки: от простого одновибратора импульсов с двумя элементами в обвязке до многокомпонентного модулятора. В данной статье будет рассмотрена схема включения таймера в режиме генератора прямоугольных импульсов с широтно-импульсной регулировкой.

Схема и принцип её работы

С развитием мощных светодиодов NE555 снова вышла на арену в роли регулятора яркости (диммера), напомнив о своих неоспоримых преимуществах. Устройства на её основе не требуют глубоких знаний электроники, собираются быстро и работают надёжно.

Известно, что управлять яркостью светодиода можно двумя способами: аналоговым и импульсным. Первый способ предполагает изменение амплитудного значения постоянного тока через светодиод. Такой способ имеет один существенный недостаток – низкий КПД. Второй способ подразумевает изменение ширины импульсов (скважности) тока с частотой от 200 Гц до нескольких килогерц. На таких частотах мерцание светодиодов незаметно для человеческого глаза. Схема ШИМ-регулятора с мощным выходным транзистором показана на рисунке. Она способна работать от 4,5 до 18 В, что свидетельствует о возможности управления яркостью как одного мощного светодиода, так и целой светодиодной лентой. Диапазон регулировки яркости колеблется от 5 до 95%. Устройство представляет собой доработанную версию генератора прямоугольных импульсов. Частота этих импульсов зависит от ёмкости C1 и сопротивлений R1, R2 и определяется по формуле: f=1/(ln2*(R1+2*R2)*C1), Гц

Принцип действия электронного регулятора яркости заключается в следующем. В момент подачи напряжения питания начинает заряжаться конденсатор по цепи: +Uпит – R2 – VD1 –R1 –C1 – -Uпит. Как только напряжение на нём достигнет уровня 2/3Uпит откроется внутренний транзистор таймера и начнется процесс разрядки. Разряд начинается с верхней обкладки C1 и далее по цепи: R1 – VD2 –7 вывод ИМС – -Uпит. Достигнув отметки 1/3Uпит транзистор таймера закроется и C1 вновь начнет набирать ёмкость. В дальнейшем процесс повторяется циклически, формируя на выводе 3 прямоугольные импульсы.

Изменение сопротивления подстроечного резистора приводит к уменьшению (увеличению) времени импульса на выходе таймера (вывод 3), и как следствие, уменьшается (увеличивается) среднее значение выходного сигнала. Сформированная последовательность импульсов через токоограничивающий резистор R3 поступает на затвор VT1, который включен по схеме с общим истоком. Нагрузка в виде светодиодной ленты или последовательно включенных мощных светодиодов включается в разрыв цепи стока VT1.

В данном случае установлен мощный MOSFET транзистор с максимальным током стока 13А. Это позволяет управлять свечением светодиодной ленты длиной в несколько метров. Но при этом транзистору может потребоваться теплоотвод.

Блокирующий конденсатор C2 исключает влияние помех, которые могут возникать по цепи питания в моменты переключения таймера. Величина его ёмкости может быть любой в пределах 0,01-0,1 мкФ.

Плата и детали сборки регулятора яркости

Односторонняя печатная плата имеет размер 22х24 мм. Как видно из рисунка на ней нет ничего лишнего, что могло бы вызвать вопросы.

После сборки схема ШИМ-регулятора яркости не требует наладки, а печатная плата легка в изготовке своими руками. В плате, кроме подстроечного резистора, используются SMD элементы.

  • DA1 – ИМС NE555;
  • VT1 – полевой транзистор IRF7413;
  • VD1,VD2 – 1N4007;
  • R1 – 50 кОм, подстроечный;
  • R2, R3 – 1 кОм;
  • C1 – 0,1 мкФ;
  • C2 – 0,01 мкФ.

Заказать готовую сборку от автора можно здесь.

Практические советы

Транзистор VT1 должен подбираться в зависимости от мощности нагрузки. Например, для изменения яркости одноваттного светодиода достаточно будет биполярного транзистора с максимально допустимым током коллектора 500 мА.

Управление яркостью светодиодной ленты должно осуществляться от источника напряжения +12 В и совпадать с её напряжением питания. В идеале регулятор должен питаться от стабилизированного блока питания, специально предназначенного для ленты.

Нагрузка в виде отдельных мощных светодиодов запитывается иначе. В этом случае источником питания диммера служит стабилизатор тока (его еще называют драйвер для светодиода). Его номинальный выходной ток должен соответствовать току последовательно включенных светодиодов.

Блог Евгения Николаенко

Светодиодный ночник с регулятором яркости своими руками

В прошлом году собрал вот такой простенький ночник из блока питания на 9 вольт и обрезков светодиодной ленты

Ночник из светодиодной ленты и блока питания

Вещица оказалась весьма полезной. Отдал на эксплуатацию супруге, и спустя некоторое время получил отзыв Оказалось, что ночником трудно попасть в розетку в полной темноте, а если это все-таки удалось, то он непременно ослепит и нарушит весь сон!

Ночник из светодиодной ленты и блока питания включен в сеть

Исходя из этого опыта решил изготовить новую модель ночного светильника с регулятором яркости и встроенным выключателем, чтобы была возможность всегда оставлять ночник в розетке.

Читайте также:  Мини DVB-T2 антенна своими руками

Видео о получившемся ночнике с регулятором яркости.

Далее в этой статье я покажу процесс изготовления ночника с регулятором яркости из блока питания на 12 вольт и светодиодной ленты SMD 5050, а также приведу принципиальную схему регулятора яркости на транзисторе КТ-819.

Материалы

Для изготовления ночника с регулятором яркости нам потребуются следующие материалы:

  • Блок питания 12 вольт (выходной ток не менее 0,5 ампер)
  • Светодиодная лента SMD 5050
  • Транзистор КТ-819 с любым индексом или его аналог
  • Переменный резистор 100 кОм с выключателем
  • Резисторы: 1 кОм — 1шт, 10 кОм — 2 шт
  • Соединительные провода
  • Секундный супер клей
  • Термоклей

Как обычно перед началом сборки не забываем удостовериться в работоспособности всех комплектующих. Как проверить транзистор можно прочитать в этой заметке

Характеристики блока питания можно узнать на этикетке или штампе изготовителя. На фото блок питания с выходным напряжением 12 вольт и максимальной силой тока 1 ампер.

Характеристики импульсного блока питания 12В 1А

Светодиодную ленту нужно нарезать сегментами по 3 диода на каждом. Обычно на лентах есть разметка, по которой можно ориентироваться.

Начинаем сборку

А точнее разборку блока питания В крышке корпуса (слева на фото) высверливаем отверстие для установки переменного резистора.

Разобранный блок питания

Устанавливаем переменный резистор в крышку блока питания. Резистор можно зафиксировать при помощи термоклея (родной гайки от этого резистора не было, почему то не продают их в магазине вместе с резистором)

Выносной конденсатор блока питания

В данной модели блока питания установке резистора мешал конденсатор. Пришлось разместить его в свободном пространстве корпуса и соединить с печатной платой при помощи провода ПВС с сечением 0,5 мм 2

Переменный резистор в крышке корпуса блока питания

Попробовав закрыть крышку блока питания выяснилось, что также мешают пара диодов.

Удалено 2 диода из мостика блока питания

Пришлось переместить их на обратную сторону печатной платы.

Перенос части диодного мостика БП на обратную сторону платы

Теперь подыскиваем свободное место для транзистора.

Транзистор КТ-819Г установлен в корпус блока питания

Крепим транзистор к крышке при помощи болта и гайки.

Крепление транзистора КТ-819Г на крышке корпуса БП

Собираем регулятор яркости светодиодной ленты по следующей схеме. Эту же схему я использовал в регуляторе яркости на подсветке компьютерного стола.

Схема регулятора яркости для светодиодной ленты

Все постоянные резисторы зафиксированы на крышке корпуса при помощи термоклея. На ножки транзистора добавлена изоляция из термоусадочных трубок.

Регулятор напряжения и тока на транзисторе КТ-819Г

На данном этапе можно собрать блок питания в корпус и проверить работу регулятора яркости на одном сегменте светодиодной ленты. Вот так лента светит на минимальной яркости.

Проверка регулятора напряжения — минимальный ток на выходе

А теперь выкручиваем резистор до упора и получаем максимальную яркость свечения.

Полная яркость светодиодной ленты

Регулятор работает как положено. Можно двигаться дальше.

Рукоятку для вращения потенциометра можно изготовить из обычных крышек от сока или минеральной воды.

Крышка от сока в качестве основы для рукоятки переменного резистора

Крышка прекрасно крепится к резистору при помощи термоклея.

Крышка приклеена к резистору при помощи термоклея

А сверху можно надеть крышку с большим диаметром. Я выбрал белый цвет для того, чтобы в темноте легче было найти регулятор.

Вторая крышка сверху на регуляторе уровня яркости

Теперь приступаем к установке сегментов светодиодной ленты на боковых поверхностях блока питания. Ленты лучше крепить при помощи секундного суперклея, чем на двусторонний скотч, с которым обычно они поставляются.

Сегменты светодиодной ленты smd 5050 на боковой поверхности блока питания

Припаиваем провода от блока питания к сегментам ленты в соответствии с полярностью.

Светодиодная лента припаяна к выходу с блока питания

Все то же самое на второй стороне корпуса.

Светодиоды на второй стороне ночника

Когда все провода припаяны к сегментам светодиодной ленты, можно проверить работоспособность устройства. Также провода и места пайки можно покрыть тонким слоем термоклея для безопасности и лучшей фиксации.

Светодиодный ночник на полной яркости

Вот так работает регулируемый ночник в режиме полной яркости.

Светодиодный ночник с регулятором яркости

Светодиодный ночник на минимальной яркости

Итак, мы получили компактный ночник из светодиодной ленты с регулятором яркости и питанием от сети 220 вольт.

KOMITART – развлекательно-познавательный портал

Разделы сайта

DirectAdvert NEWS

Друзья сайта

Осциллографы

Мультиметры

Купить паяльник

Купить Микшер

Купить Караоке

Статистика

Регулятор яркости светодиодной подсветки приборов авто. Схема плавного розжига светодиодов.

Регулятор яркости светодиодной подсветки приборов авто.
Схема плавного розжига светодиодов.

Плавный розжиг & Регулятор яркости светодиодов подсветки приборов авто

Многие автолюбители переделывают подсветку приборной панели своего авто с обычных ламп накаливания на светодиоды, и зачастую, особенно при использовании супер-ярких, приборка сияет как новогодняя елка и режет по глазам ярким свечением, что требует применения дополнительного устройства, с помощью которого можно регулировать уровень яркости, как говорится, на свой вкус. Вообще существуют два метода регулировки, это аналоговое регулирование, которая заключается в изменении уровня постоянного тока светодиода, и ШИМ регулирование, то есть периодическое включение и выключение тока через светодиод на регулируемые промежутки времени. При ШИМ-регулировке частота импульсов должна быть не ниже 200 Гц, иначе на глаз будет заметно мерцание светодиодов . Ниже приведена принципиальная схема простейшего блока, реализованного на микросхеме-таймере NE555, отечественным аналогом которой является КР1006ВИ1, эта микросхема и формирует широтно-импульсные сигналы управления.

Уровень яркости подсветки регулируется переменным резистором номиналом 50 кОм, то есть этим резистором изменяется скважность импульсов управления. В качестве регулирующего элемента применен N-канальный полевой транзистор IRFZ44N, который можно заменить, например, на IRF640 или подобный.

Делать перечень примененных элементов наверно нет смысла, их в схеме не так уж и много, поэтому перейдем к рассмотрению печатной платы.

Печатная плата разработана в программе Sprint Layout, вид платы данного формата выглядит следующим образом:

Фото-вид платы ШИМ-регулятора LAY6 формата:

У многих возникает желание добавить к схеме регулятора эффект плавного розжига, и в этом нам поможет широко распространенная в интернете простенькая схемка:

На печатной плате мы разместили обе вышеприведенных схемы, и схему регулятора, и схему плавного розжига. LAY6 формат платы выглядит так:

Фото-вид LAY6 формата:

Фольгированный текстолит для платы односторонний, размер 24 х 74 мм.

Для установления желаемого времени розжига и затухания поиграйте номиналами резисторов, обозначенных на печатной плате звездочками, так же это время зависит от номинала электролитической емкости в схеме розжига, расположенной над выходным гнездом LED (С увеличением номинала конденсатора увеличится время).

Обращаем ваше внимание, что в схеме плавного розжига применен P-канальный MOSFET. Ниже показана цоколевка транзисторов:

Цоколевка транзистора КТ503

Цоколевка транзистора IRFZ44N

Цоколевка транзистора IRF9540

В дополнение к статье приводим еще один пример схемы с регулятором яркости и плавным розжигом светодиодов приборной панели авто:

Размер архива с материалами статьи – 0,4 Mb.

Ссылка на основную публикацию