Зарядное устройство для автомобильного аккумулятора из блока питания компьютера.

Зарядное устройство из блока питания компьютера

Дата: 29.09.2015 // 0 Комментариев

Наверняка каждому автолюбителю приходилось собирать зарядное устройство для автомобиля своими руками. Существует масса разнообразных подходов, начиная от простых трансформаторных схем, заканчивая импульсными схемами с автоматической регулировкой. Зарядное устройство из блока питания компьютера, как раз занимает золотую середину. Оно получается за копеечную цену, а его параметры отлично справляются с зарядкой автомобильных АКБ. Сегодня мы вам расскажем, как за полчаса можно собрать зарядное устройство из компьютерного блока питания ATX. Поехали!

Зарядное устройство из блока питания компьютера

Для начала необходим рабочий блок питания. Можно брать совсем старый на 200 – 250 Вт, этой мощности хватит с запасом. Учитывая что зарядка должна происходить при напряжении в 13,9 – 14,4 В, то самой главной доделкой в блоке станет поднятие напряжение на линии 12 В до 14,4 В. Подобный метод применялся в статьи: Зарядное устройство из блока питания светодиодных лент.

Внимание! В работающем блоке питания элементы находятся под опасным для жизни напряжением. Не стоит хапаться руками за все подряд.

Первым делом отпаиваем все провода, которые выходили с блока питания. Оставляем только зеленый провод, его необходимо запаять к минусовым контактам. (Площадки, от которых выходили черные провода — это минус.) Это делается для автоматического старта блока при включении в сеть. Также сразу рекомендую припаять провода с клеммами к минусу и шине + 12 В (бывшие желтые провода), для удобства и дальнейшей настройки зарядного.

Следующие манипуляции будут производиться с режимом работы ШИМ — у нас это микросхема TL494 (есть еще куча блоков питания с ее абсолютными аналогами). Ищем первую ножку микросхемы (самая нижняя левая ножка), дальше просматриваем дорожку с обратной стороны платы.

С первым выводом микросхемы соединены три резистора, нам нужен тот, который соединяется с выводами блока +12 В. На фото этот резистор отмечен красным лаком.

Этот резистор необходимо отпаять с платы и измерить его сопротивление. В нашем случае это 38,5 кОм.

Вместо него необходимо впаять переменный резистор, который предварительно настраиваем на такое же сопротивление 38,5 кОм.

Плавно увеличивая сопротивление переменного резистора, добиваемся значения напряжения на выходе в 14,4 В.

Внимание! Для каждого блока питания номинал этого резистора будет разный, т.к. схемы и детали в блоках разные, но алгоритм изменения напряжение один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придется перезагружать, предварительно уменьшив сопротивление переменного резистора.

В нашем блоке сразу поднять напряжение до 14 В не получилось, не хватило сопротивление переменного резистора, пришлось последовательно с ним добавить еще один постоянный.

Когда напряжение 14,4 В достигнуто, можно смело выпаять переменный резистор и измерить его сопротивление (оно составило 120,8 кОм).

Поле замера резистора необходимо подобрать постоянный резистор с как можно близким сопротивлением.

Мы его составили из двух 100 кОм и 22 кОм.

На этом этапе можно смело закрывать крышку и пользоваться зарядным устройством. Но если есть желание, можно подключить к этому блоку цифровой вольтамперметр, это даст нам возможность контролировать ход зарядки.

Также можно прикрутить ручку для удобной переноски и вырезать отверстие в крышке под цифровой приборчик.

Финальный тест, убеждаемся, что все правильно собрано и хорошо работает.

Внимание! Данное зарядное устройство сохраняет функцию защиты от короткого замыкания и перегрузки. Но не защищает от переплюсовки! Ни в коем случае не допускается подключать к зарядному устройству аккумулятор неправильной полярностью, зарядное мгновенно выйдет из строя.

При переделке блока питания в зарядное устройство желательно иметь под рукой схему. Что бы упростить жизнь нашим читателями мы сделали небольшую подборку, где размещены схемы компьютерных блоков питания ATX.

Для защиты от переполюсовки существует масса интересных схем. С одной из них можно знакомиться в этой статье.

Зарядное устройство из компьютерного блока питания

Здравствуйте, уважаемые друзья! Сегодня я расскажу, как переделать компьютерный блок питания в зарядное устройство для автомобильного аккумулятора. Для переделки подойдет блок питания собранный на микросхемах TL494 или KA7500. Другие блоки питания, к сожалению, переделать таким способом не получится.

У каждого блока питания имеется защита от повышения напряжения и короткого замыкания, которую надо отключить.

Чтобы отключить защиту надо перерезать дорожку от Vref +5v которая подходит к 13, 14 и 15 ноге микросхемы. После этого блок питания будет запускаться автоматически при включении в сеть.

Теперь сделаем блок питания регулируемым. Удаляем два резистора R1 28,7 кОм и R2 5,6 кОм. На место резистора R1 ставим переменный резистор на 100 кОм. Напряжение будет плавно регулироваться от 4 до 16 вольт.

Схема переделки компьютерного блока питания в зарядное устройство

Полная схема блока питания на микросхеме TL494, KA7500.

Схема переделки компьютерного блока питания на микросхеме TL494, KA7500 в зарядное устройство

Осталось подключить вольт амперметр по этой схеме и зарядное устройство будет полностью готово.

Схема подключения вольт амперметра к зарядному устройству

А теперь я расскажу, как работает готовое устройство, что бы вы могли реально оценить все плюсы этой самоделки. Напряжение этого зарядного устройства плавно регулируется от 4 до 16 вольт.

Это позволяет заряжать шести и двенадцати вольтовые аккумуляторы. С помощью встроенного вольт амперметра легко можно определить напряжение, зарядный ток и окончание процесса заряда аккумуляторной батареи.

Для проверки мощности я решил подключить супер яркую 12-ти вольтовую галогеновую лампу на 55 ватт.

Лампа горит полным накалом на вольтметре 12 вольт и сила тока 8,5 ампер и это еще не предел.

Как заряжать аккумулятор? Красный крокодил плюс, черный минус. Если перепутать полярность или замкнуть, ничего страшного не произойдет, просто перегорит десяти амперный предохранитель.

В данный момент вольтметр показывает напряжение аккумулятора. Эту ручку надо повернуть влево до упора. Включаю питание и плавно поднимаю напряжение до 14,5 вольт. Начальная сила тока должна быть не более 10% от емкости аккумулятора. То есть для 60-го аккумулятора начальный ток заряда будет не более 6-ти ампер, для 55-го соответственно 5,5 ампер. И так далее.

По мере заряда аккумулятора сила тока будет постепенно снижаться, когда сила тока снизится до 150 миллиампер, это будет означать, что аккумулятор полностью зарядился. Время зарядки полностью разряженного аккумулятора составит примерно 24 часа.

Друзья, желаю удачи и хорошего настроения! До встречи в новых статьях!

496 comments on “ Зарядное устройство из компьютерного блока питания ”

Добрый день у вас выше указан D1 Диод При подключение вольт амперметра какой номинал ? или это из самой схемы ?

Добрый вечер! Диод на схеме D1 1N4007.

Добрый день Сергей. Не затруднит-ли Вас оказать мне помощь в решении такой задачи. Из китайских модулей собран БП с регулировкой V 1,5-33 вольт и регулировкой А 0-6 ампер. БП может работать в 2-х режимах 1) с постоянным выходом, 2) с циклическим выходом — 0 (пауза) или V (установленное в постоянном режиме). Цикличность(длительность) каждого состояния регулируется в пределах от 0,01 сек до 99 мин. Режим цикличности я использую для десульфатации АКБ — заряд-разряд (автомобильная лампа). Схема переключения (заряд-разряд) реализована на реле, которое в процессе эксплуатация показало свою не надежность. Возможно-ли реализовать электронную схему такого переключения? Заранее признателен и всяческих успехов в наступившем году.

Добрый вечер Геннадий! Сделать на тиристорах не получится потому, что у вас реле стоит на переключение, а тиристоры могут только включать и отключать нагрузку. В магазинах продаются твердотельные реле, они не имеет механических контактов, а использует электрические и оптические свойства полупроводников. Но стоят очень дорого. Проще заменить ваше реле на более мощное например автомобильное пяти контактное на 30А или на 100А такое никогда не сгорит.

Огромное спасибо Сергей. Тиристоры я даже не рассматривал. Возможно-ли использовать транзисторный (биполярный или полевой)? Для этой цели поставить диодную развязку между БП и АКБ с подключенным ключом с нагрузкой, а управление ключом осуществлять напряжением с того-же БП (0 или Uвых БП). Вопрос «как реализовать такой ключ?». При Uвых=0,5в(логический 0) ключ открыт и лампа горит и наоборот, быстродействие значения не имеет. Спасибо, всех благ.

На тиристорах лучше будет. На транзисторах падение напряжения большое. Хотя бы примерную схему вашего БП посмотреть.

Сергей.Как подписаться на ваш сайт?

Николай, подписаться можно на RSS канал по ссылке https://sdelaitak24.ru/feed/

Сергей по данной ссылке подписаться не удаётся-открывается страница,ана ней только текст и всё.

Николай нужна специальная программа одна из этих на выбор Feedreader 3.08, FleetNews 1.6, infoscape 1.7, Noopod 3.0.1.0, QuickRSS 2.0, RSS Aggregator 2.6 вставляете ссылку в программу и все новые самоделки с моего сайта будут автоматически отображаться в программе.

Здравствуй Сергей.Сколько перелопатил сайтов по переделке БП от ПК и всё не нравилось-слишком много делов (а я уже старенький)-много деталей выпаивать.И вот наконец удача-зашёл к тебе на сайт.Минимум работы,а результат тот же,что и у других. У меня блок-ATX MEC320 350W.На TL494. Буду его делать. Есть блок питания Повер 510-на
UC3843 и супервизор WT 7527.Но этот Повер 510-наверно не потяну .

Добрый вечер Николай! Будут вопросы с блоком на TL494, пишите я вам помогу.

Сергей .Добрый день.Если отрезать дорожку к 4 ой ножке TL-494 ,а от 4 ой ножки перемычка на GND.Нужно ли в таком случае перерезать питание +5 вольт к 13,14,15 ножкам TL-494.Ведь перерезав дорожку к 4ой ноге микросхемы и закоротив на землю мы уже отключаем защиту микросхемы?

Добрый вечер Николай! Достаточно отключить защиту одним удобным для вас способом. Например если отрезали дорожку от 4 ноги, а потом 4 ногу соединили с GND, то больше ничего делать не надо, защита будет отключена.

Спасибо.Понял,но с переделкой придётся мне потерпеть.Блок питания поставил к газовой колонке-дежурным питанием.Как всегда не вовремя сели батарейки на праздники негде было купить.Буду искать ещё АТХ блок.

Зарядное устройство на основе блока питания ATX

У компьютерного блока питания, наряду с такими преимуществами, как малые габариты и вес при мощности от 250 Вт и выше, есть один существенный недостаток – отключение при перегрузке по току. Этот недостаток не позволяет использовать БП в качестве зарядного устройства для автомобильного аккумулятора, поскольку у последнего в начальный момент времени зарядный ток достигает нескольких десятков ампер. Добавление в БП схемы ограничения тока позволит избежать его отключения даже при коротком замыкании в цепях нагрузки.

Зарядка автомобильного аккумулятора происходит при постоянном напряжении. При этом методе в течение всего времени заряда напряжение зарядного устройства остается постоянным. Заряд аккумулятора таким методом в ряде случаев предпочтителен, так как он обеспечивает более быстрое доведение батареи до состояния, позволяющего обеспечить запуск двигателя. Сообщаемая на первоначальном этапе заряда энергия тратится преимущественно на основной зарядный процесс, то есть на восстановление активной массы электродов. Сила зарядного тока в первоначальный момент может достигать 1,5С, однако для исправных, но разряженных автомобильных аккумуляторов такие токи не принесут вредных последствий, а наиболее распространённые БП ATX мощностью 300 – 350 Вт не в состоянии без последствий для себя отдать ток более 16 – 20А.

Максимальный (начальный) зарядный ток зависит от модели используемого БП, минимальный ток ограничения 0,5А. Напряжение холостого хода регулируется и для заряда стартёрного аккумулятора может составлять 14…14,5В.

Вначале необходимо доработать сам БП, отключив у него защиты по превышению напряжений +3,3В, +5В, +12В, -12В, а также удалив неиспользуемые для зарядного устройства компоненты.

Для изготовления ЗУ выбран БП модели FSP ATX-300PAF. Схема вторичных цепей БП рисовалась по плате, и несмотря на тщательную проверку, незначительные ошибки, к сожалению, не исключены.

На рисунке ниже представлена схема уже доработанного БП.

Для удобной работы с платой БП последняя извлекается из корпуса, из неё выпаиваются все провода цепей питания +3,3V, +5V, +12V, -12V, GND, +5Vsb, провод обратной связи +3,3Vs, сигнальная цепь PG, цепь включения БП PSON, питание вентилятора +12V. Вместо дросселя пассивной коррекции коэффициента мощности (установлен на крышке БП) временно впаивается перемычка, провода питания

220V, идущие от выключателя на задней стенке БП, выпаиваются из платы, напряжение будет подаваться сетевым шнуром.

В первую очередь деактивируем цепь PSON для включения БП сразу после подачи сетевого напряжения. Для этого вместо элементов R49, C28 устанавливаем перемычки. Убираем все элементы ключа, подающего питание на трансформатор гальванической развязки Т2, управляющего силовыми транзисторами Q1, Q2 (на схеме не показаны), а именно R41, R51, R58, R60, Q6, Q7, D18. На плате БП контактные площадки коллектора и эмиттера транзистора Q6 соединяются перемычкой.

После этого подаем

220V на БП, убеждаемся в его включении и нормальной работе.

Далее отключаем контроль цепи питания -12V. Удаляем с платы элементы R22, R23, C50, D12. Диод D12 находится под дросселем групповой стабилизации L1, и его извлечение без демонтажа последнего (о переделке дросселя будет написано ниже) невозможно, но это и не обязательно.

Удаляем элементы R69, R70, C27 сигнальной цепи PG.

Читайте также:  Как переделать аккумуляторный шуруповерт на 220 В

Включаем БП, убеждаемся в его работоспособности.

Затем отключается защита по превышению напряжения +5В. Для этого выв.14 FSP3528 (контактная площадка R69) соединяется перемычкой с цепью +5Vsb.

На печатной плате вырезается проводник, соединяющий выв.14 с цепью +5V (элементы L2, C18, R20).

Выпаиваются элементы L2, C17, C18, R20.

Включаем БП, убеждаемся в его работоспособности.

Отключаем защиту по превышению напряжения +3,3В. Для этого на печатной плате вырезаем проводник, соединяющий выв.13 FSP3528 с цепью +3,3V (R29, R33, C24, L5).

Удаляем с платы БП элементы выпрямителя и магнитного стабилизатора L9, L6, L5, BD2, D15, D25, U5, Q5, R27, R31, R28, R29, R33, VR2, C22, C25, C23, C24, а также элементы цепи ООС R35, R77, C26. После этого добавляем делитель из резисторов 910 Ом и 1,8 кОм, формирующий из источника +5Vsb напряжение 3,3В. Средняя точка делителя подключается к выв.13 FSP3528, вывод резистора 931 Ом (подойдёт резистор 910 Ом) – к цепи +5Vsb, а вывод резистора 1,8 кОм – к «земле» (выв. 17 FSP3528).

Далее, не проверяя работоспособность БП, отключаем защиту по цепи +12В. Отпаиваем чип-резистор R12. В контактной площадке R12, соединённой с выв. 15 FSP3528 сверлится отверстие 0,8 мм. Вместо резистора R12 добавляется сопротивление, состоящее из последовательно соединённых резисторов номинала 100 Ом и 1,8 кОм. Один вывод сопротивления подсоединяется к цепи +5Vsb, другой – к цепи R67, выв. 15 FSP3528.

Отпаиваем элементы цепи ООС +5V R36, C47.

После удаления ООС по цепям +3,3V и +5V необходимо пересчитать номинал резистора ООС цепи +12V R34. Опорное напряжение усилителя ошибки FSP3528 равно 1,25В, при среднем положении регулятора переменного резистора VR1 его сопротивление составляет 250 Ом. При напряжении на выходе БП в +14В, получаем: R34 = (Uвых/Uоп – 1)*(VR1+R40) = 17,85 кОм, где Uвых, В – выходное напряжение БП, Uоп, В – опорное напряжение усилителя ошибки FSP3528 (1,25В), VR1 – сопротивление подстроечного резистора, Ом, R40 – сопротивление резистора, Ом. Номинал R34 округляем до 18 кОм. Устанавливаем на плату.

Конденсатор C13 3300х16В желательно заменить на конденсатор 3300х25В и такой же добавить на место, освободившееся от C24, чтобы разделить между ними токи пульсаций. Плюсовой вывод С24 через дроссель (или перемычку) соединяется с цепью +12V1, напряжение +14В снимается с контактных площадок +3,3V.

Включаем БП, подстройкой VR1 устанавливаем на выходе напряжение +14В.

После всех внесённых в БП изменений переходим к ограничителю. Схема ограничителя тока представлена ниже.

Резисторы R1, R2, R4…R6, соединённые параллельно, образуют токоизмерительный шунт сопротивлением 0,01 Ом. Ток, протекающий в нагрузке, вызывает на нём падение напряжения, которое ОУ DA1.1 сравнивает с опорным напряжением, установленным подстроечным резистором R8. В качестве источника опорного напряжения используется стабилизатор DA2 с выходным напряжением 1,25В. Резистор R10 ограничивает максимальное напряжение, подаваемое на усилитель ошибки до уровня 150 мВ, а значит, максимальный ток нагрузки до 15А. Ток ограничения можно рассчитать по формуле I = Ur/0,01, где Ur, В – напряжение на движке R8, 0,01 Ом – сопротивление шунта. Схема ограничения тока работает следующим образом.

Выход усилителя ошибки DA1.1 подсоединён с выводом резистора R40 на плате БП. До тех пор, пока допустимый ток нагрузки меньше установленного резистором R8, напряжение на выходе ОУ DA1.1 равно нулю. БП работает в штатном режиме, и его выходное напряжение определяется выражением: Uвых=((R34/(VR1+R40))+1)*Uоп. Однако, по мере того, как напряжение на измерительном шунте из-за роста тока нагрузки увеличивается, напряжение на выв.3 DA1.1 стремится к напряжению на выв.2, что приводит к росту напряжения на выходе ОУ. Выходное напряжение БП начинает определяться уже другим выражением: Uвых=((R34/(VR1+R40))+1)*(Uоп-Uош), где Uош, В – напряжение на выходе усилителя ошибки DA1.1. Иными словами, выходное напряжение БП начинает уменьшаться до тех пор, пока ток, протекающий в нагрузке, не станет чуть меньше установленного тока ограничения. Состояние равновесия (ограничения тока) можно записать так: Uш/Rш=(((R34/(VR1+R40))+1)*(Uоп-Uош))/Rн, где Rш, Ом – сопротивление шунта, Uш, В – напряжение падения на шунте, Rн, Ом – сопротивление нагрузки.

ОУ DA1.2 используется в качестве компаратора, сигнализируя с помощью светодиода HL1 о включении режима ограничения тока.

Печатная плата (под “утюг”) и схема расположения элементов ограничителя тока изображена на рисунках ниже.

Несколько слов о деталях и их замене. Электролитические конденсаторы, установленные на плате БП FSP, имеет смысл заменить на новые. В первую очередь в цепях выпрямителя дежурного источника питания +5Vsb, это С41 2200х10V и С45 1000х10V. Не забываем о форсирующих конденсаторах в базовых цепях силовых транзисторов Q1 и Q2 – 2,2х50V (на схеме не показаны). Если есть возможность, конденсаторы выпрямителя 220В (560х200V) лучше заменить на новые, большей ёмкости. Конденсаторы выходного выпрямителя 3300х25V должны быть обязательно с низким ЭПС – серии WL или WG, в противном случае они быстро выйдут из строя. В крайнем случае, можно поставить б/у конденсаторы этих серий на меньшее напряжение – 16В.

Прецизионный ОУ DA1 AD823AN «rail-to-rail» как нельзя кстати подходит к данной схеме. Однако его можно заменить на порядок более дешёвым ОУ LM358N. При этом стабильность выходного напряжения БП будет несколько хуже, также придется подбирать номинал резистора R34 в меньшую сторону, поскольку у этого ОУ минимальное выходное напряжение вместо нуля (0,04В, если быть точным) 0,65В.

Максимальная суммарная рассеиваемая мощность токоизмерительных резисторов R1, R2, R4…R6 KNP-100 равна 10 Вт. На практике лучше ограничиться 5 ваттами – даже при 50% от максимальной мощности их нагрев превышает 100 градусов.

Диодные сборки BD4, BD5 U20C20, если их действительно стоит 2шт., менять на что-либо более мощное не имеет смысла, обещанные производителем БП 16А они держат хорошо. Но бывает так, что в действительности установлена только одна, и в этом случае необходимо либо ограничиться максимальным током в 7А, либо добавить вторую сборку.

Испытание БП током 14А показало, что уже спустя 3 минуты температура обмотки дросселя L1 превышает 100 градусов. Долговременная безотказная работа в таком режиме вызывает серьёзное сомнение. Поэтому, если подразумевается нагружать БП током свыше 6-7А, дроссель лучше переделать.

В заводском исполнении обмотка дросселя +12В намотана одножильным проводом диаметром 1,3 мм. Частота ШИМ – 42 кГц, при ней глубина проникновения тока в медь составляет около 0,33 мм. Из-за скин-эффекта на данной частоте эффективное сечение провода составляет уже не 1,32 мм 2 , а только 1 мм 2 , что недостаточно для тока в 16А. Иными словами, простое увеличение диаметра провода для получения большего сечения, а следовательно, уменьшения плотности тока в проводнике неэффективно для этого диапазона частот. К примеру, для провода диаметром 2мм эффективное сечение на частоте 40 кГц только 1,73мм 2 , а не 3,14 мм 2 , как ожидалось. Для эффективного использования меди намотаем обмотку дросселя литцендратом. Литцендрат изготовим из 11 отрезков эмалированного провода длиной 1,2м и диаметром 0,5мм. Диаметр провода может быть и другим, главное, чтобы он был меньше удвоенной глубины проникновения тока в медь – в этом случае сечение провода будет использовано на 100%. Провода складываются в «пучок» и скручиваются с помощью дрели или шуруповёрта, после чего жгут продевается в термоусадочную трубку диаметром 2мм и обжимается с помощью газовой горелки.

Готовый провод целиком наматывается на кольцо, и изготовленный дроссель устанавливается на плату. Наматывать обмотку -12В смысла нет, индикатору HL1 «Питание» какой-либо стабилизации не требуется.

Остаётся установить плату ограничителя тока в корпус БП. Проще всего её прикрутить к торцу радиатора.

Подключим цепь «ООС» регулятора тока к резистору R40 на плате БП. Для этого вырежем часть дорожки на печатной плате БП, которая соединяет вывод резистора R40 с «корпусом», а рядом с контактной площадкой R40 просверлим отверстие 0,8мм, куда будет вставлен провод от регулятора.

Подключим питание регулятора тока +5В, для чего припаяем соответствующий провод к цепи +5Vsb на плате БП.

«Корпус» ограничителя тока присоединяется к контактным площадкам «GND» на плате БП, цепь -14В ограничителя и +14В платы БП выходят на внешние «крокодилы» для подключения к аккумулятору.

Индикаторы HL1 «Питание» и HL2 «Ограничение» закрепляются на месте заглушки, установленной вместо переключателя «110V-230V».

Скорее всего, в вашей розетке отсутствует контакт защитного заземления. Вернее, контакт, может быть, и есть, а вот провод к нему не походит. Про гараж и говорить нечего… Настоятельно рекомендуется хотя бы в гараже (подвале, сарае) организовать защитное заземление. Не стоит игнорировать технику безопасности. Это иногда заканчивается крайне плачевно. Тем, у кого розетка 220В не имеет контакта заземления, оборудуйте БП внешней винтовой клеммой для его подключения.

После всех доработок включаем БП и корректируем подстроечным резистором VR1 требуемое выходное напряжение, а резистором R8 на плате ограничителя тока – максимальный ток в нагрузке.

Подключаем к цепям -14В, +14В зарядного устройства на плате БП вентилятор 12В. Для нормальной работы вентилятора в разрыв провода +12В, либо -12В, включаются два последовательно соединённых диода, которые уменьшат напряжение питания вентилятора на 1,5В.

Подключаем дроссель пассивной коррекции коэффициента мощности, питание 220В от выключателя, прикручиваем плату в корпус. Фиксируем нейлоновой стяжкой выходной кабель зарядного устройства.

Прикручиваем крышку. Зарядное устройство готово к работе.

В заключение стоит отметить, что ограничитель тока будет работать с БП ATX (или AT) любого производителя, использующего ШИМ-контроллеры TL494, КА7500, КА3511, SG6105 или им подобным. Разница между ними будет заключаться лишь в методах обхода защит.

Ниже вы можете скачать печатную плату ограничителя в формате PDF и DWG (Autocad)

Делаем зарядное устройство из блока питания компьютера

Аккумулятор автомобиля — часть системы, которая при длительном использования теряет заряд. Для восполнения запасов энергии используют готовые приборы. Можно самостоятельно сделать зарядное устройство из компьютерного блока питания.

Как сделать зарядку для АКБ из блока питания компьютера?

При сборке зарядного блока соблюдают требования, делающие прибор пригодным для восстановления работы аккумулятора. Выходное напряжение не должно превышать 14,4 В. В противном случае источник питания быстро выйдет из строя.

Необходимые материалы и инструменты

Для сборки устройств различной мощности используют такие материалы и инструменты:

  1. Зажимы. Используются для подсоединения питающих кабелей к клеммам батареи.
  2. Резисторы R43. Рекомендуется приобрести детали номиналом 2,7 и 10 кОм.
  3. Отвертки. Потребуются крестовая и плоская насадки.
  4. Конденсаторы. Необходимый номинал — 25 В.
  5. Диоды 1N4007.
  6. Светодиодная лампочка. Рекомендуется выбирать элемент зеленого цвета.
  7. Силиконовый герметик.
  8. Мультиметр.
  9. Медные кабели. Потребуется 2 провода длиной 1 м.

Блок питания компьютера должен иметь такие параметры:

  • выходное напряжение — 12В;
  • номинальное входное напряжение 110/220 В;
  • потребляемая мощность — 230 В;
  • максимальная сила тока — 8 А.

Пошаговая инструкция

Компьютер питается от блока с напряжением 220 В, этот параметр для зарядного устройства должен составлять не более 14,4 В. Главная задача — снижение рабочего показателя.

Для этого используется резистор, обеспечивающий регулировку выходного напряжения во всех режимах. Процесс сборки зарядки своими руками включает такие этапы:

  1. Подготовка компьютерного блока. Деталь освобождают от лишних элементов, после чего отключают все кабели. Контакты разъединяют путем нагревания. Необходимо снять переключатель напряжения. Это позволяет избежать перегорания устройства. Удаляют оба кабеля, подведенных к конденсатору в цепи. На микросхеме находится 4 провода желтого цвета. Их демонтировать не нужно. Оставляют и 4 черных кабеля, а также 1 зеленый.
  2. Осмотр микросхемы. Провод желтого цвета подключается к конденсаторам на 12 В. Этого параметра недостаточно для зарядки автомобильной АКБ, поэтому детали заменяют элементами номиналом 25 В.
  3. Обеспечение автоматического включения блока. Если устройство встроено в компьютер, оно активируется при замыкании некоторых контактов. Необходимо снять средство защиты от перепадов напряжения. Защита принимает повышение параметра до 14,4 В за скачок, в результате чего зарядка перестает функционировать. Схема снабжена 3 оптронами, обеспечивающими связь между передатчиками входного и выходного напряжения. Деактивируют элементы путем замыкания контактов.
  4. Получение нужного значения напряжения. Для этого устанавливают плату TL431. Компонент настраивает напряжение, поступающее по всем каналам устройства. Для повышения рабочего параметра используют резистор. Однако он дает недостаточное напряжение. Встроенный резистор заменяют новым, имеющим сопротивление менее 2,7 кОм.
  5. Удаление транзистора. Элемент, расположенный рядом с платой TL431, может препятствовать нормальной работе зарядного блока. Его нужно снять.
  6. Стабилизация выходного напряжения. Необходимо улучшить параметры канала, пропускающего ток 12 В. Использовать вспомогательные схемы с напряжением 5 В нельзя. Требуемую нагрузку обеспечивает резистор с сопротивлением 200 Ом. Дополнительный канал снабжается элементом номиналом 68 Ом. После монтажа резисторов можно отрегулировать напряжение.
  7. Ограничение силы выходного тока. Этот параметр на выходе блока не должен превышать 8 А. Для получения нужного значения повышают сопротивление резистора, включенного в электрическую цепь обмотки трансформатора. Деталь заменяют элементом большего номинала. Старый резистор выпаивают, после чего фиксируют новый. После выполнения этого действия сила тока не будет повышаться даже при замыкании.
  8. Установка дополнительной схемы. Плата не входит в комплект блока, поэтому ее делают своими руками. Для этого потребуется реле с 4 клеммами на 12 В. Схему снабжают диодом, отражающим процесс зарядки. Если лампочка горит, зарядное устройство подключено к аккумуляторной батарее правильно.
  9. Обеспечение защиты от перепадов напряжения. 2 диода соединяются параллельно. Реле закрепляют на вентиляторе компьютерного блока силиконовым герметиком. При отсутствии такого средства используют болты.
  10. Подсоединение проводов с зажимами. Рекомендуется использовать разноцветные кабели, что позволяет соблюдать полярность. К зарядному блоку провода прикрепляют нейлоновыми стяжками, которые пропускают через просверленные заранее отверстия. Для измерения силы тока заряда устройство снабжают амперметром. К электрической цепи прибор подключается параллельным способом.
  11. Проверка работоспособности зарядного устройства.
Читайте также:  Компактное зарядное устройство для любых внешних аккумуляторов

Зарядное устройство из БП ноутбука

Блок питания ноута имеет выходное напряжение в 19 В, параметр нужно снижать. Для этого используют 2 метода.

Без переделки

Способ подразумевает последовательное соединение АКБ автомобиля с мощной лампой. Осветительный прибор будет отнимать часть напряжения. Один контакт лампы соединяется с плюсовой клеммой питающего блока, другой — с плюсом АКБ. После этого зарядное устройство подключают к электрической сети.

Лампа при использовании этого способа быстро выходит из строя, что приводит к перезаряду и взрыву аккумулятора.

С переделкой блока питания

Процесс переделки источника питания ноутбука включает такие этапы:

  1. Разборка корпуса. Работу выполняют аккуратно, стараясь не повредить пластиковые детали, которые пригодятся для дальнейшего использования. Внутреннюю плату подключают к вольтметру, точно определяющему напряжение. Чаще всего оно составляет 19 В.
  2. Снижение напряжения. Для этого заменяют резистор, расположенный на выходе. Деталь соединяет шестой контакт микросхемы ТЕА1761 с плюсовой клеммой питающего блока. Элемент удаляют с помощью паяльника. Мультиметром замеряют сопротивление детали. Рабочее значение — 18 кОм. Вместо удаленного элемента устанавливают временный номиналом 22 кОм. Перед монтажом сопротивление настраивают на 18 кОм. Резистор запаивают, не затрагивая других компонентов схемы. Постепенным изменением сопротивления достигают снижения напряжения до 14,4 В.
  3. Удаление резистора. После получения нужного напряжения деталь снимают и замеряют сопротивление. Оно должно составлять 12,5 кОм. На основании этой величины выбирают постоянный резистор. Можно использовать 2 детали номиналом 10 и 2,5 кОм. Концы резистора устанавливают в термокембрик и припаивают к плате.
  4. Тестирование схемы. Перед сборкой заменяют выходные параметры тока. Значения в 14,2 В достаточно для зарядки автомобильного аккумулятора.
  5. Сборка устройства. С соблюдением полярности припаивают провода с зажимами. Минусовой контакт может иметь вид главного провода, плюсовой — оплетки.

В результате получается зарядное устройство с выходной силой тока 3 А. При падении параметра процедура зарядки считается законченной. Удобство пользования обеспечивает амперметр, включаемый в схему прибора.

Как правильно зарядить АКБ самодельной зарядкой?

Чтобы батарея не вышла из строя, при восстановлении заряда соблюдают такие правила:

  1. АКБ отсоединяют от бортовой сети автомобиля. Для этого снимают болты, удерживающие фиксатор аккумулятора. Устройство вынимают из гнезда и относят в отапливаемое помещение.
  2. Корпус АКБ очищают от загрязнений. Особое внимание удаляют клеммам. Их очищают от остатков электролита зубной щеткой или наждачной бумагой. Главное — не удалить рабочее напыление.
  3. Открыв банки АКБ, проверяют уровень электролита. Раствор должен полностью скрывать металлические пластины. При снижении уровня жидкости образуются газы, приводящие к взрыву. При необходимости банки заполняют дистиллированной водой.
  4. Корпус осматривают на наличие сколов и трещин. При обнаружении крупных дефектов батарею заряжать нельзя.
  5. При подключении зарядного прибора соблюдают полярность. Если все выполнено правильно, устройство подключают к сети. Снимать колпачки банок не нужно.

После восстановления заряда оценивают количество электролита. Если оно не изменилось, аккумулятор можно устанавливать в автомобиль.

Зарядное устройство из компьютерного БП ATX с защитой от переполюсовки и КЗ.

Пожалуй каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядить аккумулятор своего “коня”. Я много раз находил информацию, что из компьютерного блока питания можно сделать хорошую зарядку для аккумуляторов, но всегда отбрасывал эту информацию так как на переделку просто не было достаточно свободного времени и у меня была простейшая зарядка внутри которой был трансформатор, диод и амперметр 🙂 Заряжать аккумуляторы при необходимости я мог, но вот качество этой зарядки оставляло желать лучшего.

И вот, когда появилось свободное время, я начал процесс изготовления (переделки) блока питания компьютера в зарядное устройство для автомобильных свинцово-кислотных аккумуляторных батарей 62 А.Ч. Потратив несколько часов на поиски в интернете был найден ненужный, ещё рабочий блок питания (Codegen 250W) и инструкция со схемой по переделке. Сразу скажу, что суммарно процесс переделки у меня занял около двух-трёх недель, так как взятая изначально схема дорабатывалась, просчитывалась, переделывалась и настраивалась. При этом за две-три недели перечитал кучу инструкций, статей, схем по принципам работы блоков питания, работе ШИМ контроллеров, назначению ДГС и ещё тонны полезнейшей информации для общего развития. Многие элементы схемы пришлось рассчитывать самому дабы получить именно то, что мне было необходимо.

Начальная схема переделки выглядела так:

Блок питания решено было взять Codegen 250W 250X1, вот такой:

Была найдена принципиальная схема блока питания Codegen 250W 250X1:

Огромное количество схем к компьютерным блокам питания АТХ/АТ и блокам питания к ноутбукам можно найти в моём сборнике схем к компьютерным блокам питания. В сборнике есть и данная схема.

Для начала выпаиваем с платы БП всё лишнее и заменяем некоторые детали: схемы защиты и контроля напряжений выпаиваем, конденсаторы ставим с большим напряжением, линию +3.3v выпаиваем полностью, линию -5v тоже выпаиваем. Оставляем схему управления оборотами вентилятора и для неё линию -12v на которой заменяем конденсатор на аналогичный с большим напряжением.

Для чего необходимо менять конденсаторы на аналогичные с большим напряжением? Отвечаю. Мы будем поднимать напряжение на линии +12v до +14.4v (а в процессе настройки и более), а вместе с линией +12v вырастут напряжения и на линиях +5v (примерно до +6v) и -12v (примерно до -14,4v). Стоит ещё учесть, что мы оставим стабилизацию только по линии +12v и в моменты большой нагрузки, когда ток будет около 5-6 ампер, то напряжения на остальных линиях могут ещё возрасти. Так что лучше поставить конденсаторы с более высоким запасом по напряжению на все линии.

На принципиальной схеме изменения показаны красным цветом:

Так как мне необходим максимальный ток зарядки в 5-6 ампер, то резистор R11 я установлю не 0,2 Ом, а 0,1 Ом. Но если установить его один, то он будет сильно греться, поэтому я установил параллельно три резистора 0,3 Ом 5 Ватт, общее сопротивление получилось 0,1 Ом и они практически не нагреваются даже при токах в 10 ампер.

Резистор R9 отвечает за уровень напряжения на линии +12v. Делитель напряжения R9/R3 делает напряжение на ноге 1 микросхемы равным 2.5 вольт. ШИМ контроллер будут стремиться выдать на выходе линии +12v такое напряжение, чтобы на ноге 1 было 2.5 вольта и оно сравнялось с опорным напряжением на ноге 2 (тоже 2.5 вольта), которое получается на делителе R1/R2.

Взяв калькулятор я посчитал, что для 12 вольт на выходе зарядного устройства, R9 должен быть 11,4 КОм, а для 14,4 вольт – 14,28 КОм. В результате я решил установить один постоянный резистор на 10 КОм (обозначен как R9) и один переменный на 10КОм (обозначен как R9+), тем самым я смогу точно подстроить нужное напряжение на выходе. Изначально я установил R9+ на 1,4 КОм чтобы получить 12 вольт на выходе. Вдальнейшем я подстройкой резистора увеличу напряжение до необходимого уровня, но это уже будет на этапе тестирования готового изделия.

Внимание! Ни в коем случае не устанавливайте в схему полевые транзисторы на напряжение менее 30 вольт! Дело в том, что при подключении аккумулятора обратной полярностью, на полевике будет сумма напряжений от зарядки (14.4v) и от самого аккумулятора (от 12 до 15 вольт), что в сумме будет 14.4 + 12(максимум 15) = около 28-30 вольт. Так что рекомендую устанавливать полевик более чем на 30 вольт.

В качестве шунта решено было использовать встроенный шунт в китайский LED измеритель напряжения и тока, 100V 10A. Вот такой:

Такой индикатор-измеритель можно купить в китайском интернет магазине всего за пару долларов, оплата с банковской карты, доставка посылки через обычную почту за 3-4 недели. Я заказал себе сразу несколько, чтобы они у меня были в запасе, такие индикаторы будут полезны не только в зарядке.

Изучив схему подключения этого измерителя приходим к выводу, что должен подойти и в качестве шунта и в качестве измерителя напряжения и тока. Смотрим схему подключения:

А вот и принципиальная схема измерителя:

Как можно видеть, подключить его в нашу схему защиты не составит труда. Питание берём из нашей же линии, внутри измерителя стоит собственный стабилизатор на 3 вольта для работы измерителя. Кстати, опытным путём я определил (уже на рабочем устройстве), что сопротивление шунта RX в этом измерителе где-то 0,04 Ома. А суммарное сопротивление шунта и транзисторного перехода полевика – 0,04+0,017=0,057 Ом. Этого будет немного многовато, и защита может срабатывать при меньшем токе, чем в исходной схеме. Ну ничего, немного доработаем схему увеличив порог тока, необходимого для срабатывания защиты.

Поясню мои доработки. Добавлен конденсатор 0,33 микрофарада для отключения защиты по току в начальный момент скачка тока, например при подключении ламп накаливания. Без этого конденсатора при подключении лампочки на 40 Ватт срабатывала защита, хотя ток при работе лампы был менее 4 ампер. Лампы в момент подключения потребляют огромные токи! Конденсатор подобрал опытным путём так, чтобы защита не срабатывала при подключении одной лампы, но срабатывала при подключении двух ламп по 40 ватт.

Резистор R16 добавил для того, чтобы понизить порог срабатывания защиты по току. Без этого резистора схема тоже работает, но порог определяется только значением падения напряжения на Rш и переходе транзистора VT2. При увеличении тока через эти сопротивления, на базе транзистора VT3 повышается напряжение, и когда оно станет 0,5-0,7 вольт – транзистор VT3 откроется и закроет полевой транзистор (минусовая цепь разорвётся).

Добавлены индикаторы на светодиодах:

  • VD1 ” зелёный ” – индикатор наличия напряжения на выходных клеммах
  • VD3 ” синий ” – индикатор срабатывания защиты
  • VD5 ” красный ” – индикатор обратного подключения аккумулятора (переполюсовки)

Все детали, что не разместились на плате старого блока питания, я изобразил на окончательной схеме:

Ну и наконец фото уже собранного зарядного устройства:

Всем спасибо за интерес к статье. Жду критику в комментариях и советы по доработке устройства!

Автор: Попов Вадим Сергеевич

Автомобильное зарядное устройство из компьютерного БП АТХ

Как известно, при кратковременных поездках в городе автомобильный аккумулятор не успевает заряжаться, постоянный недозаряд приводит к сульфатации пластин и к сокращению службы самого аккумулятора. При эксплуатации авто только в городском режиме советуют раз в 3-4 месяца полностью заряжать автомобильный аккумулятор штатным зарядным устройством. Да вот беда – нормальное зарядное есть не у всех, денег на него жалко, а заряжать аккумулятор желательно регулярно. Для тех, у кого нет лишних 30-50 баксов на автомобильную зарядку от сети, а иметь оную уж очень хочется, и предназначена эта статья.

Очень неплохую вещь можно сделать из обычного компьютерного блока питания АТХ. Компьютерный блок питания ваще шикарная штука, ибо предназначен для того, чтобы молотить круглосуточно, запитывая материнку, процессор, винчестер, да еще и выдавать при этом довольно солидные токи. В самих компьютерах БП периодически мрут, ибо сделаны в большинстве своем китайцами, а эти ребята привыкли экономить на всем – занижать параметры конденсаторов, ставить резисторы меньшей мощности, и вообще за это им огромное спасибо, ибо благодаря их стараниям у меня, к примеру, нет недостатка в компьютерных блоках питания для экспериментов.

Достать компьютерный БП проще простого – нужно пойти в любой компьютерный магазин, у которого есть свой сервисный центр, и купить за очень недорого «дохлый» блок питания. Как правило у любого сервисного центра есть здоровенная коробка этих самых БП, ибо чинить их экономически невыгодно – компьютерные магазины, вообще-то зарабатывают не на ремонте БП, а на их продаже Так что если подойти к директору, прикинуться бедным студентом, рассказать жалобную историю, что мол детали дорогие, а денег нет, то думаю за каких-то десять баксов можно притащить домой солидную кучу блоков питания.

Скажу сразу – не всякий блок питания подойдет для переделки. Внутри блока питания стоит микросхема ШИМ-контроллера, которая управляет полумостовым преобразователем. Нас интересует блок питания с установленным ШИМ TL 494 (аналоги KA7500, DBL494, M5T494 и тому подобное). На этой микросхеме с небольшими изменениями можно получить не только автомобильное зарядное устройство, но и полноценный лабораторный блок питания с регулируемым стабилизированным напряжением и ограничением тока.

Из блоков питания с установленными ШИМ SG6105 , АТ2003 и т.д. получить блок питания с регулируемыми параметрами не получится, максимум что из него можно выжать – автомобильное зарядное 14.2-14.8В/3-6 А.

В этой статье мы рассмотрим переделку БП на самой распространенной ШИМ TL 494. Структурная схема ШИМ показана на рисунке:

“Выводы 1 и 2 – неинвертирующего и инвертирующего входов усилителя ошибки 1; вывод 3 – вход «обратной связи»; вывод 4 – вход регулировки «мертвого времени» (время, в течение которого закрыты оба выходных транзистора, причем независимо от величины тока нагрузки); выводы 5 и 6 – для подключения внешних элементов ко встроенному генератору пилообразного напряжения; вывод 7 – общий; выводы 8 и 9 – коллектор и эмиттер первого транзистора; выводы 11 и 10 – коллектор и эмиттер второго транзистора; вывод 12 – питание; вывод 13 – выбор режима работы (возможна работа в одно- или двухтактном режиме: если на этом выводе присутствует логическая «1″ (+2,4…+5 В), то транзисторы открываются поочередно (двухтактный режим работы); если на выводе будет «О» (0…0.4 В), то это однотактный режим, при этом транзисторы могут быть включены параллельно для увеличения выходного тока); вывод 14 – выход опорного напряжения (+5 В); выводы 15 и 16 – неинвертирующий и инвертирующий входы усилителя ошибки 2.
ШИМ-контроллер работает на фиксированной частоте и содержит встроенный генератор пилообразного напряжения, который требует для установки частоты всего два внешних компонента: резистора Rt и конденсатора Ct. При этом частота генерации будет равна f=1,1/RtCt.”

После того, как БП принесли домой, разобрали, прошлись кисточкой и пропылесосили, нужно убедиться, что входные цепи, а также источник питания дежурного режима (так называемая дежурка) работают и выдают на ШИМ питание.

Читайте также:  Датчик влажности почвы своими руками

Для начала проверяем работоспособность источника дежурного питания. Дежурка работает всегда, когда на блок питания подано 220В и включен тублер. Она выдает два напряжения – одно на питание ШИМ, другое +5Vsb (Standbye). Сигнал Standbye – фиолетовый провод большого разъема питания, 9 контакт.

При включенном в сеть БП на 9 контакте должно быть 5В. Если нет, ищем неисправность в цепях дежурки. Если есть – проверяем наличие питания на выводе 12 ШИМ. Микросхема запускается при подаче на вывод 12 напряжения от 7 до 41В (в среднем дежурка выдает 12-15В).

Схема дежурного источника питания выглядит примерно так:

Дежурка выполнена по схеме однотактного преобразователя с насыщающимся трансформатором. Чаще всего высыхают электролитические конденсаторы, теряют емкость конденсаторы обвязки. Прозваниваем транзистор, диоды, первичную и вторичную обмотки трансформатора на предмет КЗ.

Если дежурка работает, а ШИМ не запускается, проверяем работоспособность ШИМ-преобразователя. Для этого необходимо иметь стабилизированный источник питания +12В. Подключаем источник к выводу 12 ШИМ, вывод 4 закорачиваем на землю. При наличии осциллографа можно стать на ноги 8, 11 и посмотреть сигналы на транзисторы раскачки, а на ноге 5 можно наблюдать «пилу» работающего внутреннего генератора. Если осциллографа нет, то мультиметром проверяем наличие +5В на выводе 14 – если есть, то внутренний источник опорного напряжения работает.

Очень часто случается, что при закорачивании вывода 4 ШИМ на землю БП АТХ начинает работать. В этом случае причина неисправности кроется в цепях защиты от перегрузок и цепях формирования служебных сигналов. Так как в дальнейшем эти цепи защиты нам будут не нужны, и от +3.3/+5В мы откажемся вообще, проверка цепей защиты здесь рассматриваться не будет. Должен заметить, что включение БП АТХ происходит при замыкании сигнала PS_ON на землю (зеленый провод, 16 контакт). Так как этот сигнал относится к цепям формирования служебных сигналов, он нас не интересует – мы запустим БП без него.

Наша основная задача – запустить блок питания и получить на выходе +12В, с которым мы и будем в дальнейшем работать. Простейшая схема компьютерного блока питания на ШИМ TL494 (аналог КА7500) показана на рисунке ниже:

Схема БП состоит из следующих блоков:

1. Сетевой фильтр и выпрямитель.

2. Схема измерений перенапряжений, она же схема защиты и формирования служебных сигналов.

3. Дежурный источник питания.

4. Усилитель мощности.

5. Выпрямитель для напряжения +12В вторичной цепи источника питания.

6. Схема промежуточного усилителя.

Микросхему ШИМ легко найти невооруженным взглядом

Допустим ШИМ работает, но на выходе напряжений нет. Проверяем цепи усилителя мощности и силовые транзисторы.

Все осциллограммы снимать относительно эмиттера. Основные неисправности – обрывы резисторов в цепях базы, потеря емкости конденсаторами или их пробой, межвитковое КЗ в обмотках трансформатора, пробой высоковольтных транзисторов.

Итак, наша основная задача – получить на выходе +12В. Условно будем полагать, что с этой задачей мы успешно справились, ибо разбор конструкции БП АТХ и принципы его ремонта не входит в нашу первоочередную задачу. Выходная часть с выпрямителем и фильтрами питания сделаны по примерно одной и той же схеме:

Так как напряжения +3.3В, +5В, – 5В и -12В нам не нужны, можно смело выпаивать все компоненты на выходе, отвечающие за эти напряжения. Оставляем выходной дроссель, электролитический конденсатор в цепи +12В заменяем на 2200 мкФ 50В (изначально там стоит конденсатор, расчитанный на рабочее напряжение 16В, в случае переделки БП под выходное напряжение 25В он взорвется). Также не лишним будет заменить сборку диодов Шоттки в цепи +12В на другую, с большим прямым током. Можно заменить эту сборку на ту, которая стояла в цепи +5В или поставить сборку диодов Шоттки на более высокий ток, скажем, 10TQ045 с прямым током 10А или MBR1545CT с прямым током 15А. Заодно выпаиваем со схемы весь жгут проводов – он нам больше не понадобится.

После выпаивания запасных компонентов должно получиться примерно следующее:

Не бойтесь выпаивать все лишнее – для запуска ШИМ TL494 нужно всего 4 сопротивления и один конденсатор (не считая пары переменных резисторов). Они уже есть на схеме, даже если Вы выпаяете лишнее, потом ориентируясь по печатным проводникам, можно будет вернуть нужные компоненты (3 сопротивления и 1 емкость) на место. Нижняя микросхема LM339 – счетверенный компаратор, на котором собрана схема защиты, также не нужна. Ее можно смело выпаивать или выкусывать, я обломался

На плате оставляем только дроссель (ниже радиатора), и заменяем конденсатор в цепи +12В на 2200 мкФ 35В – изначально там стоит конденсатор на напряжение 16В.

При переделке компьютерного БП в лабораторный источник питания я опирался вот на эту схему, называемую в народе «схема итальянца» (кликабельно для увеличения):

Или же можно воспользоваться схемой попроще:

Здесь показана минимальная обвязка ШИМ TL494 для того, чтобы микросхема заработала. Так как раньше блок питания уже как-то работал, скорей всего эта обвязка уже присутствует в схеме, нужно только изменить подключение выводов 1, 2, 4, 15 и 16. На контакт 12 подается напряжение с дежурного источника питания. Контакт 4 садится на землю. Можно проследить дорожку и выпаять диод, через который на контакт 4 подается сигнал ошибки со схемы защиты. Схема защиты с сигналом PS_ON нам уже тоже не нужна, поэтому ее можно смело выковыривать из платы, вместо нее мы соберем схему ограничения тока.

* Прослеживаем по дорожкам выводы 15 и 16, отпаиваем от них компоненты и соединяем согласно схеме.

* Прослеживаем по дорожкам распайку выводов 1, 2, отпаиваем от них компоненты и соединяем согласно схеме.

Кроме этого, нам понадобится два переменных резистора нужного номинала, и шунт 0.1-0.0.1. Шунт я сделал с двух «керамических» сопротивлений номиналом 0.2 Ом, соединив их параллельно. На самом деле это не керамические сопротивления, а обычные резисторы, зацементированные в керамику, поэтому при нагреве их номинал «уплывает», желательно в качестве шунта применять что-то типа старых советских проволочных резисторов С5-16. Вот что вышло в итоге:

Фактически для переделки БП АТХ в лабораторный источник питания или зарядное устройство нужно два переменных резистора и шунт на 0.1-0.01 Ом. Ну и конечно мало-мальские познания в электронике и большое желание замутить что-то такое на зависть всем пацанам из соседних гаражей . Что в танке главное, знаете? Правильно, плюс небольшая внимательность.

В принципе уже после этого напряжение на выходе можно менять в пределах от 2.5 до 25В, а ограничение тока можно выставлять от 0.5 до 15 А. Выставив однажды сопротивлением 14.2-14.6В и ограничив ток в пределах 0.1С от емкости заряжаемой батареи (для батареи 50А*ч ток заряда должен быть равен 5А), мы получим полноценное зарядное устройство. Так как схема БП АТХ является по-сути стабилизатором напряжения, то она будет поддерживать заданное раннее напряжение, а вот ток по мере заряда аккумулятора будет падать. И это является очень большим преимуществом этого зарядного устройства по сравнению с остальными зарядными, у которых стабилизированный ток заряда – нет риска что аккумулятор «закипит». Аккумулятор можно бесконечно долго держать подключенным к этому зарядному устройству – по мере набора емкости ток заряда будет снижаться вплоть до ноля, фактически переходя в заряд «капельным режимом», то есть поддерживая емкость аккумулятора неограниченное время.

Но так как такое зарядное устройство будет использоваться раз в два-три месяца, если не раз в год, а остальное время оно просто будет валяться в гараже, есть очень большой соблазн потратить еще один день, и сделать из него полноценный лабораторный блок питания. Понадобится только две измерительные головки – вольтметр и амперметр. Можно прикрутить китайский блок 2 в 1, амперметр + вольтметр. Либо для пущей убедительности возможна установка аналоговых вольтметра и амперметра. Амперметр нужен обязательно с шунтом на тот предел, который указан на шкале. Иначе замучаетесь подбирать отрезок провода необходимого сопротивления. В моем случае манганиновый шунт уже встроен в амперметр.

Вырезав из текстолита лицевую панель, профрезеровав отверстия под амперметр, вольтметр, регуляторы и прочее, я собрал все воедино.

Можно пойти другим путем, и сделать переднюю панель скажем из нержавейки, порезав ее лазером.

В результате получился полноценный блок питания с пределами 25В/10А (ток фактически больше, порядка 15А)

Работа блока на нагрузку в виде автомобильной лампы.

Вид блока со стрелочными индикаторами

Штатный вентилятор нужно подключить к бывшему выходу +12В, развернув его так, чтобы он дул внутрь блока, охлаждая радиаторы силовых транзисторов и выходных диодов. У меня заодно он обдувает и шунт. При этом чем выше напряжение, тем больше скорость вращения вентилятора. Не пытайтесь изменить направление вращения, изменяя полярность питания – внутри вентилятора стоит специальная микросхема, она скорей всего сдохнет

ВНИМАНИЕ! Схема фактически не содержит защиты от короткого замыкания, вместо нее на одном из компараторов ошибки ШИМ TL494 собрано ограничение выходного тока. Это значит, что если замкнуть накоротко выходы источника питания, ток короткого замыкания в цепях будет равен лишь выставленному ранее ограничению тока! Блок питания достаточно мощный, если ограничение тока будет выставлено на максимум, он будет «вдувать» в нагрузку (которая по сути шунт 0.1 Ом) максимальный ток. Помните об этом, если Вы не хотите, чтобы из вашего блока ушел волшебный дым, на котором работает вся электроника.

Для избежания подобных казусов нагрузка в моем случае подключается через предохранитель на 15А. Есть хотя бы один шанс из ста что при КЗ предохранитель успеет сгореть ранше, чем сгорит что-то в схеме. К сожалению, происходит ровно наоборот – схема вылетает, защитив собой предохранитель

ВНИМАНИЕ ШТРИХ! При подключении к аккумулятору строго соблюдать полярность! В противном случае все тот же волшебный дым покинет какой-то компонент схемы, и он больше никогда не будет работать.

Порядок зарядки аккумулятора. На холостом ходу выставить регулятором тока минимальное ограничение тока (крайнее левое или крайнее правое положение сопротивления R3 согласно вышеприведенной схеме, зависящее (положение) от распайки резистора), регулятором напряжения выставить напряжение 14.2-14.6В для обычных аккумуляторов и 14.8-15.6 для кальциевых. Отключить источник питания от сети. Подключить аккумулятор, соблюдая полярность. Включить источник питания и регулятором тока выставить нужный ток заряда.

При этом напряжение немного упадет до какого-то значения, которое зависит от внутреннего сопротивления аккумулятора, но стабилизатор тока будет держать нужный ток. По мере набора аккумулятором емкости ток заряда будет падать, а напряжение вернется до установленного ранее значения.

Во избежании взрыва подключать и отключать аккумулятор только при выключенном источнике питания.

Примечание. Длительная нагрузка (порядка 10 часов) источника питания двумя параллельными автомобильными лампами 12В 55Вт при напряжении 14.6В и суммарном токе потребления почти 8А показало, что при работающем обдуве какого-то сильно критичного нагрева компонентов внутри блока питания нет.

Выводы: зарядное устройство для аккумуляторов, сделанное на базе блока питания АТХ обладает следующими преимуществами:

1. Фантастическая живучесть и работоспособность. Компьютерные импульсные блоки питания с принудительным охлаждением имеют КПД порядка 80-85%, диапазон входного напряжения 160-240В, время наработки на отказ порядка 50 тыс. часов. Другими словами, блок питания предназначен для того, чтобы сутками молотить включенным. Так как используется только напряжение +12в, то выходной трансформатор нагружен даже меньше, чем если бы использовались также +5В и +3.3В, ибо их обмотки намотаны на одном сердечнике выходного трансформатора.

2. Стабилизация выходного напряжения в пределах ±5% для значения +12В

3. Ограничение тока, из чего следует, что зарядное такого типа смело можно применять для заряда необслуживаемых гелиевых аккумуляторов – риск «закипятить» аккумулятор отсутствует. Последний возьмет столько тока, сколько ему нужно.

4. Возможность заряжать аккумулятор не отключая его от автомобиля.

5. Полноценный блок питания с широкими пределами регулирования для решения повседневных задач.

Недостаток – время полного заряда аккумулятора большой емкости вследствии уменьшения тока заряда по экспоненте может оказаться несколько больше ожидаемого. Это компенсируется невозможностью довести аккумулятор до «кипения», если бы заряжать его постоянным стабильным током.

Ссылка на основную публикацию