Система водяного охлаждения.

Бесшумный компьютер с двухконтурной системой водяного охлаждения

C приближением лета, весьма актуальна, стала проблема тепловыделения домашнего компьютера. Если зимой системный блок грел комнату так, что приходилось закрывать батарею центрального отопления, то с наступлением теплых дней, была уверенность в том, что старенький оконный кондиционер не справится с потоком тепла. А поскольку подошло и время апгрейда, было решено, сделать максимум возможного, с целью обеспечить комфортные условия работы.Распостраненные подходы к проблеме охлаждения компьютера

Базовый — приобрести готовый компьютер или комплектующие со штатными системами охлаждения. Типичный подход неискушенного пользователя, которых, кстати, подавляющее большинство, позволяет приобрести систему которая скорее всего будет работать и не перегреваться, но показатели шума вплотную приблизятся к медицинской норме в 45 Дб. Штатные кулера, как процессорные, так и для видеоплат, изготавливаются с целью минимизировать массу и соответственно цену. Производители видеокарт несколько более внимательны к ушам своих покупателей, существует достаточно много моделей видеокарт с пассивным охлаждением, а так же на рынке встречаются видеокарты с высокоэффективной и малошумящей системой охлаждения IceQ. Следует учесть, что производители компьютеров, оптимизируя соотношение цена/производительность, обычно, не ставят комплектующие имеющие качественные системы охлаждения, просто по причине их более высокой стоимости.

Продвинутый — заапгрейдить систему охлаждения компьютера более совершенными вентиляторами, кулерами и реобасами. Большинство наших читателей отличаются именно таким подходом. Наиболее распространена в России продукция Arctic Cooling и Zalman. В итоге, собирается система, нередко насчитывающая десяток вентиляторов, все с оптимизированной крыльчаткой и гидродинамическими подшипниками. Текстолит печатных плат с трудом выдерживает килограммы меди высокоэффективных радиаторов, пронизанных тепловыми трубками. Штатные системы охлаждения отправляются на помойку… Результат от всех этих модных усовершенствований падает прямо пропорционально мощности системы, так как температура внутри корпуса стремительно растет с повышением мощности, и в топовых конфигурациях прокачка воздуха через корпус все равно вызывает значительный шум. Возникает тупиковая ситуация, когда каждый компонент системы достаточно бесшумен, скажем 18-20 Дб, но собранные вместе они дают 30-35 Дб еще более неприятного, за счет различного спектра и возникающих интерференций, шума. Стоит отметить и повышенную сложность очистки от пыли подобной конструкции. Если штатную систему легко чистить раз в полгода обычным пылесосом, то все эти тонко-реберные конструкции современных кулеров очистить весьма сложно. Проблеме пыли в корпусах, производителями почему-то не уделяется достаточное внимание, лишь некоторые корпуса снабжены весьма неэффективными пылевыми фильтрами. Между тем, измельченная вентиляторами пыль не только вредит охлаждению, осаждаясь на поверхности радиаторов, но и весьма вредна для здоровья человека, так как не задерживается бронхами и очень долго выводится из легких. Некоторые источники, считают что вред от мелкой пыли сопоставим с вредом от пассивного курения. Сильно страдают от пыли накопители CD/DVD и FDD, встречался даже кардридер забитый пылью до полной невозможности работы.

Экстремальный — некоторые люди в поисках идеала способны зайти достаточно далеко. В частности, проблему перегрева и пыли можно решить, приобретя у Zalman вот такой корпус:

Те, кто решил собрать бесшумный медиацентр, могут обратить внимание на более компактный MiniATX вариант, стоящий вдвое дешевле.

Впрочем, и эти, рассчитанные на пассивное охлаждение корпуса, производитель рекомендует для разогнанных и производительных систем, обдувать внешним вентилятором. Отказавшись от корпуса вовсе, можно попробовать обойтись пассивным охлаждением. Компьютер ваш будет выглядеть примерно вот так:

Системы водяного охлаждения пользуются заслуженной популярностью у оверклокеров. Принцип их действия основан на циркуляции теплоносителя. Нуждающиеся в охлаждении компоненты компьютера нагревают воду, а вода в свою очередь, охлаждается в радиаторе. При этом радиатор может находиться снаружи корпуса, и даже быть пассивным.

Следует отметить существование криогенных систем охлаждения для ПК, работающих по принципу смены фазового состояния вещества, подобно холодильнику и кондиционеру. Недостатком криогенных систем является высокий шум, большая масса и стоимость, сложность в инсталляции. Но только используя подобные системы, возможно добиться отрицательной температуры процессора или видеокарты, а соответственно и высочайшей производительности.

Исторически так сложилось, что блоки питания обделены бесшумными системами охлаждения. Во многом это обусловлено тем, что они рассеивают 15-25% потребляемой компьютером энергии. Вся эта мощность выделяется на разных, активных и пассивных компонентах блока питания. Греются силовые диоды и ключи инверторов, трансформаторы и дроссели… Традиционная схема компоновки блока питания требует переосмысления с переходом на внешнее охлаждение. Блоки питания с возможностью подключения к водяной системе охлаждения производит только одна компания.

Бесшумные блоки питания других производителей маломощны, либо являются бесшумными только до определенной, весьма небольшой нагрузки.

Gembird CCC-PSU4X-S
держит до 13 А по 12В шине
Topower Top-570NF
пиковая мощность 570 Вт
бесшумен до 150 Вт

К сожалению, производители БП в настоящее время не выпускают блоки питания мощностью свыше 400 Вт с пассивной системой охлаждения. Отчасти это связано с возросшими требованиями к мощностным параметрам БП, отчасти с нежеланием производителей искать новые решения (таким решением могло бы быть к примеру, заливка внутренностей ИБП теплопроводным компаундом, использование тепловых трубок). В сложившейся ситуации, можно рекомендовать обратить внимание на блоки питания, отвечающие требованиям программы 80plus gold. Обладая КПД около 90%, такие БП могут обеспечить минимальный уровень шума системы охлаждения.Создание полностью бесшумного компьютера

Учитывая вышеизложенное, и имея определенные финансовые ограничения, было начато проектирование бесшумного компьютера. Очевидно, система охлаждения была выбрана жидкостная. На барахолке, по весьма сходной цене, был приобретен корпус с интегрированной системой охлаждения, Koolance PS2-901BW.

Система охлаждения включает в себя помпу, радиатор в верхней части корпуса, три низкооборотистых вентилятора GlacialTech GT80252BDL-2, блок термоконтроля и индикации.

Выбор блока питания оказался однозначен, только FSP ZEN 400 обладает полностью пассивной системой охлаждения, высоким КПД и достаточной мощностью. Несмотря на это, при тестировании на нагрузке в 300 Вт, радиатор БП разогрелся до 78 градусов. В связи с чем, было принято решение, установить на радиатор блока питания парочку имеющихся у меня водоблоков Zalman ZM-WB1, и проблема перегрева была решена.

Материнская плата была выбрана Elitegroup P35T-A, бюджетное решение, тем не менее, собранная на чипсете, поддерживающий новые 45 нм процессоры на 1333 МГц шине и гигабитную сеть на чипе Intel 82566. С целью предотвращения перегрева в условиях отсутствия обдува, на северный мост был установлен водоблок Zalman ZM-NWB1, а на процессор Intel Core 2 Duo E7500 соответственно Zalman ZM-WB4 Plus.

Имеющийся на северном мосту радиатор был переставлен на южный мост, сменив там тонкую алюминиевую пластинку. Охлаждение стабилизатора напряжений мне показалось достаточным, но возможно, после установки четырехядерника придется ставить ватерблок и туда. Впрочем, к тому времени я надеюсь обзавестись материнской платой с интегрированной системой охлаждения, к примеру Foxconn BlackOps или ASUS Blitz . Поскольку Zalman ZM-GWB3850 найти в продаже не удалось, на видеокарту Sapphire HD 3870 был установлен ватерблок Zalman ZM-GWB2, а на микросхемы памяти и радиатор стабилизатора питания, были наклеены с помощью термоклея Алсил-5, дополнительные радиаторы.

C целью сделать систему полностью бесшумной, в компьютер установлен твердотельный жесткий диск Transcend 2,5 SSD SATA, размером 32 Гб.

В дальнейшем, по мере удешевления дисков, планируется покупка четырехканального кэширующего контроллера и сборка массива RAID0 на основе твердотельных накопителей.

Изюминкой данного технического решения является двухконтурная система охлаждения. Предстоящая перспектива рассеивать в комнате несколько сотен Ватт меня нисколько не радовала, как по причине затрат на бесшумную реализацию этого проекта, так и по причине предстоящей летней жары. В поисках эффективного решения, был использован мировой опыт. В частности, уже достаточно давно, стойки датацентров охлаждают водопроводной водой.

Для начала было необходимо понизить давление с 6 атмосфер в водопроводе, до уровня который способен выдержать водоблок. Надежды на то, что они выдержат давление, более чем в одну-две атмосферы не было, и на отвод холодной воды был установлен понижающий давление редуктор.

Для предотвращения засоров в тонких подающих трубках и каналах водоблока, после редуктора вода очищается фильтром тонкой очистки.

Для осуществления теплообмена между водопроводной водой и охлаждающей жидкостью в компьютере, был взят водоблок Zalman ZM-WB3 Gold на внутренний контур и полностью медный водоблок от Thermaltake Big Water на внешний контур. Они были соединены между собой через термоинтерфейс и образовали теплообменник для передачи тепла от внутреннего контура охлаждения к внешнему. В случае прекращения подачи холодной воды, по достижению устанавливаемого порога температуры теплоносителя, включаются три вентилятора штатной системы охлаждения.

Во внутреннем контуре циркулирует смесь из дистиллированной воды и автомобильной охлаждающей жидкости G11, соотношением 80 к 20, добавка антифриза не дает воде загнивать и защищает систему от коррозии. Так как счетчика воды у меня не предусмотрено, после выполнения функции охлаждения, проточная вода стекает в канализацию. При очень небольшом расходе воды, текущей тоненькой струйкой, температура воды в системном блоке не превышала 30 градусов! И это при полной бесшумности системы.

* — В этой полной тишине, если прислушиваться, можно услышать шум текущей воды и урчание помпы. Поэтому, сама помпа и корпус компьютера изнутри, были шумоизолированы материалами Noisebuster.

Для проверки эффективности системы охлаждения, использовались две конфигурации программного обеспечения.
Idle — загружен рабочий стол операционной системы Windows Vista Ultimate x64 SP1.
3D — выполняется тестовый пакет Futuremark 3Dmark Vantage.
В обоих режимах использовалась штатная система водяного охлаждения Koolance, без подключения к холодной воде.
Idle Water и 3D Water — в теплообменник внешнего контура подавалась холодная вода температурой около 17 градусов, вентиляторы штатной системы ошлаждения не работали.
Idle Air и 3D Air — использовалась штатная, однослотовая, система охлаждения видеокарты ATI Radeon HD 3870 и процессорный кулер Neon 775 производства GIGABYTE.
Теплоносителем в первых четырех тестах является вода внутреннего контура охлаждения, а в двух последних тестах — воздух внутри системного блока. Для получения стабильных результатов, все тесты выполнялись в течении часа, а показания о максимальной температуре снимались с помощью программы HWMonitor.

Из графика следует, что охлаждение водой значительно эффективнее, чем охлаждение воздухом. В частности, в системе охлаждаемой воздухом, во время простоя, зафиксированы параметры нагрева аналогичные нагруженной системы охлаждаемой водой! Система, охлаждаемая во время работы 3D теста воздухом, достаточно быстро прогрела воздух внутри системного блока до температуры выше 45 градусов. Неудивительно, что температура процессоров приблизилась к 80 градусам, а вентиляторы зашумели на полную мощность.

Многие задают себе вопрос, какова цена тишины. Ниже приведена таблица, отражающая примерное удорожание компьютера с различными вариантами охлаждения. В качестве «эталона» была подсчитана стоимость типичного компьютера базовой конфигурации:

  • Процессор Intel Core Duo E7200 — 3600р.
  • Кулер GlacialTech Igloo 5062 — 250р
  • Материнская плата Elitegroup P35T-A — 2050р
  • Память 2×2 ГБ DDR2 PC6400 — 1900р
  • Видеокарта Sapphire Radeon HD 3870 512 МБ — 4350р
  • Жесткий диск 250 ГБ Seagate Barracuda 7200.10 SATA — 1400р
  • DVD-RW NEC-7190 SATA — 700
  • Корпус Delux DLC-SH496 400 Вт — 2000р
  • Дисковод FDD 3,5 TEAC — 150р
  • Итого: 16400р
ОхлаждениеУлучшенное воздушноеБесшумное воздушноеВодяноеБесшумное водяное
КомпонентыCPU Cooler Zalman CNPS9700Видеоплата HIS 3870 ICEQ3Zalman TNN 300Thermaltake
Big Water 745ватерблоки Zalman
NWB1 и GWB2
Zalman Reserator 2БП FSP ZEN 400
Удорожание2300р 14%14800р 90%5000р 30%10900р 65%

Для корректного подсчета, цена заменяемых компонент вычиталась из общей суммы, и графа удорожание содержит «чистую» сумму, на которую данная конфигурация становится дороже базовой.

Для интересующихся, привожу расчет удорожания описанной в статье системы:

  • Корпус Koolance PS2-901BW Б/У — 1000р
  • Ватерблок Zalman ZM-WB4 Plus — 700р
  • Ватерблок Zalman ZM-NWB1 — 500р
  • Ватерблок Zalman ZM-GWB1 — 500р
  • Ватерблок Zalman ZM-NWB2 — 500р
  • Ватерблок Thermaltake Big Water Б/У — 200р
  • Трубка силиконовая 10 метров — 250р
  • БП FSP ZEN 400 — 3700р
  • Твердотельный жесткий диск 32 ГБ Transcend — 3100р
  • Фильтр тонкой очистки воды — 300р
  • Регулятор давления воды — 250р
  • Шумоизолирующий материал Noisebuster — 350р

С зачетом корпуса и блока питания, сумма удорожания составляет 8250р или 50%, бесшумный жесткий диск прибавляет к этому еще 3200р (20%). Такова на настоящее время цена полной бесшумности компьютера.

Что дальше?

С целью экономии воды, возможно изготовление трехконтурной системы охлаждения, в которой теплообменник крепится непосредственно на трубу магистрали холодной воды, и жидкость этой, промежуточной системы, прокачивается отдельной помпой. Весьма интересна возможность расположить между первым и вторым контуром полупроводниковый холодильник на эффекте Пельтье.

Применение подобных, прогрессивных решений, позволяет достигнуть рекордной производительности при полном отсутствии шума.

В связи с вышеизложенным, непонятна низкая активность производителей комплектующих по оснащению материнских плат, видеокарт и блоков питания системами водяного охлаждения. Крайне необходимой является разработка штуцера, конструкция которого позволит подключать компоненты без риска разлива теплоносителя.

Время собирать жидкостное охлаждение ПК!

реклама

В первую очередь хорошо бы определиться, в каком корпусе будет собираться система – от этого зависит выбор радиаторов и общий план расположения. Изначально СЖО было установлено в корпус Fractal Design Define R5, но после благополучно переехало в новый Fractal Design Define S, размеры и устройство корпусов практически идентично, проблем с переездом не возникло.

реклама

реклама

реклама

реклама

• ЦП: AMD Ryzen 7 2700X

• МП: ASUS PRIME X470-PRO

• Видеокарта: AMD Vega 56

• ОЗУ: G.Skill Trident Z 2×8 GB

• SSD: Kingston SSD A400 120GB

• БП: CoolerMaster V850 850W [RS850-AFBAG1-EU]

• Корпус: Fractal Design Define S

При выборе компонентов для СЖО ориентировался на барахолку этого ресурса, потому как цены новых комплектующих показались негуманными.

Приведу список того, что удалось приобрести:

• Радиатор1: Hardware Labs Black Ice SR2 280 MP

• Радиатор2: Black Ice Nemesis 420GTS XFlow

• Помпа+резервуар: EK-XRES 140 DDC 3.2 PWM Elite + Multiport TOP

• Водоблок ЦП: EK-Supremacy – Full Nickel

• Шланг: FLX White 3/8 ID, 5/8 OD, (16/10mm) 2м (куплен в магазине)

• Вентиляторы: 3хNoctua NF-P14S-REDUX-900

• фитинги barrow: компрессионные прямые, кран, тройник, удлинители, термодатчики, 90 и 45 градусов адаптеры угловые, заглушки, нож для шлангов и трубок (удалось купить новые на барахолке)

• Фитинги EK компрессионные прямые

Всё это богатство удалось заполучить за сумму чуть меньшую двадцати тысяч рублей – совсем не дешево, но цена в магазине удивит сильнее. Удивила стоимость фитингов, добрая четверть всей суммы ушла на них. При желании можно заменить на менее опрятные внешне, но гораздо более приятные по цене варианты. Шланг выбран как самый простой в использовании вариант, трубки симпатичнее, но сложнее в использовании. Толщина шланга – вопрос отдельного обсуждения, но я считаю вариант 13 мм внешнего радиуса излишне ломким, а из 10/16 и 13/19 мм выбрал тот, под который нашлись фитинги на барахолке.

Приступим

Для начала не помешает переобуть водоблок в «красные башмаки», он достался мне с креплениями под 115х сокет. К сожалению, в комплекте обнаружилась только рамка под AM3, но меня выручил уважаемый форумец Olegdjus, у которого, по удачному стечению обстоятельств, как раз был комплект из рамки и опорной пластины AM4 для водоблоков EK.

Читайте также:  Улитка в технике тильда

Водоблок потрепан жизнью, как видно на фотографиях, но ещё послужит правому делу охлаждения железа. Заменить крепления оказалось совсем не сложно, надо всего лишь… открутить 4 винта со стороны подошвы и заменить рамку крепления, убедиться в правильном положении уплотнительной резинки и закрутить те же винты обратно.

Дальше священное действо – мажем термопасту. Вопрос строго религиозный, есть много техник, таких как: размазывание пальцем, размазывание пальцем в пакетике, размазывание банковской картой, размазывание любыми другими плотными картами/лопатками, техника точной капли, креста и ещё много других вариаций. Не забудем про технику «доброй бабушки», когда паста накладывается от души и она аппетитно потом стекает по краям бутерброда крышки процессора, пачкая всё вокруг. По факту – при достаточном количестве пасты и хорошем прижиме подошвы кулера/водоблока эффективность методов очень близка. Я использую технику подчёркивания названия, именно так расположен кристалл процессора под этой крышкой, и мне так спокойнее, после фото я ещё чуть-чуть капнул пасты, чтобы наваристее было, но новую фотографию сделать забыл.

Закрепляем водоблок согласно инструкции на материнской плате.

Ради любопытства откручиваем водоблок и смотрим на отпечаток термопасты, не лучший, но терпимо, фирменный горб ЕК в действии.

Дальше плату надо определить в корпус, для этого размещаем по соответствующим размеру нашего экземпляра отметкам стойки, крепим заднюю планку. По заветам известного прапорщика, для эффективной установки материнской платы в системный блок, берём материнскую плату и устанавливаем в системный блок!

Перед тем как начнём прикручивать радиаторы и вентиляторы – очень советую подключить дополнительное питание процессора, в современных корпусах часто слишком маленькое расстояние от верхней крышки до материнской платы и сделать это потом будет крайне затруднительно.

Примеряем верхний радиатор, подключать вентиляторы в верхние разъёмы платы тоже стоит до установки или же задействовать другие разъёмы для вентиляторов, контроллеры, сплиттеры и т.п.

Отмерим и отрежем

Работать со шлангом легко и приятно, отмерять не приходится слишком дотошно, лишний сантиметр не будет выделяться, да и отрезать если что не проблема.

На следующем фото видно, для каких целей были потрачены рубли на удлинители barrow, с их помощью удалось аккуратно обойти неудобство от установленных вентиляторов. Компрессионные фитинги просты в использовании, главное не забыть накручивающуюся гайку надеть на шланг.

С другой стороны (хитрым образом предвидел такую схему и выбрал радиатор типа cross-flow) конструкции также используем удлинитель и угловые адаптеры, соединим шлангом оба радиатора. Толстый радиатор имеет впечатляющий набор вариантов подключения, потом это пригодится.

Дальше опять с использованием углового адаптера делаем переход в резервуар с помпой.

Вечерело, фитинги и другие приспособы подходили к концу, надо было как-то заканчивать. Решено было собрать франкенштейна из тройника и крана для лёгкого обслуживания в будущем.

Изначально предполагалось, что кран через угловой адаптер будет прикручен к освободившемуся входному порту помпы (крышка резервуара используется как вход для жидкости), но из-за особенностей конструкции в этом месте не получается плотного соединения при использовании компонентов barrow. Нужны дополнительные уплотнители, которые вместе с другими фитингами, трубками и всячиной давно (ещё в ноябре) отправлены для меня заботливыми китайскими продавцами, но никак не найдут дорогу к отделению почты через метели. По тем же причинам датчик температуры охлаждающей жидкости переехал в один из портов «толстого» радиатора.

Соединяем оставшиеся элементы, прикручиваем помпу, штатное место крепления не доступно, рассчитано на тонкий радиатор + вентиляторы за передней стенкой корпуса, но эту проблему мы переживём, так даже лучше.

Подключаем кабели питания, и внутреннее убранство корпуса практически закончено.

Лейся песня!

Заправляем систему, для этого использую остаток шланга, фитинг, красную (!) воронку.

Прикручиваем один конец шланга в свободный порт на крышке резервуара, в другой конец шланга вставляем воронку. Заливаем до краёв, запускаем помпу и либо продолжаем лить так, чтобы воздух не попадал в насос, либо останавливаем помпу и доливаем жидкость в резервуар. По мере выхода воздуха из системы доливаем жидкость, всё. Под местами потенциальных протечек не мешало бы подложить что-то быстро впитывающее, хотя бы обычные салфетки. Запускать помпу можно с помощью дополнительного блока питания, либо не подключая основной к компонентам системы используя замыкание двух (зелёный провод и любой провод с «землёй») контактов в 24-пиновом штекере, для облегчения процедуры в продаже имеются спец-заглушки. Если уверены в герметичности системы при первом запуске – можно не стеснять себя лишними телодвижениями и мерами предосторожности, но это для совсем отчаянных.

Выводы

По результатам тестирования, верхний радиатор мог бы справиться с системой в одиночку, но в компании из двух радиаторов это удаётся сделать с минимумом шума. Помпа абсолютно не слышна в закрытом корпусе уже при 3300 оборотов в минуту, вентиляторы тоже настроены на грани бесшумности.

В повседневном использовании процессор разогнан до 4250 Мгц при напряжении 1,3В, DDR4 работает на частоте 3600 с ужатыми таймингами 14-15-14-28-42, напряжение SoC 1.09В.

В таких условиях Linx с задачей 28326 прогревает процессор до 77 градусов (Tdie) при должной усидчивости и готовности ждать 7+ проходов.

Видеокарта с прошитым биосом от Vega 64 работает на частотах 1632 Мгц при напряжении 1,15В, память – 1155 Мгц, температуры не поднимаются выше 50 градусов.

При нормальном использовании, а не стресс-нагрузках, значения температур гораздо ниже. А самое главное – тишина, ради которой всё и затевалось. Для полного удовлетворения осталось заменить память на вариант более подходящий по цветовому решению и разобраться с эстетически верным способом установки крана.

PS: Выяснилось, что проблема с неплотным соединением на портах помпы решается средствами от EK, существуют специальные адаптеры и они были найдены, но не радикально чёрного цвета, постараюсь пережить такой конфуз. Красная память переехала в сборку на 1151v2, вместо неё установлен комплект Corsair Vengeance RGB PRO, который смог работать в том же режиме с некоторыми нюансами.

Почему водяное охлаждение не нужно в обычном ПК

Компьютерная область давно уже перестала быть сугубо профессиональной — теперь ПК есть в каждом доме, и зачастую не один. А с популярностью приходит и мода: попробуйте найти корпус дороже нескольких тысяч рублей без стекла, а топовую материнскую плату или видеокарту — без RGB-подсветки. Конечно, все эти «навороты» никак не влияют на работу компьютера, но есть и другие новые веяния, причем некоторые из них могут быть не только дорогими и бесполезными, но и даже опасными. К ним относится и повальное желание ставить в дорогие ПК системы водяного охлаждения (СВО). Конечно, это кажется логичным — «вода» ведь должна охлаждать лучше «воздуха» — но ниже я попытаюсь объяснить, почему для обычного ПК, пусть и мощного, СВО абсолютно не нужна.

Физика: вода против эфира

И хотя СВО и кулер делают одно и тоже — отводят тепло от горячего процессора — на практике они делают это разными с физической точки зрения способами, и поэтому нельзя со 100% уверенностью утверждать, что водяное охлаждение окажется эффективнее воздушного.

Как работает «водянка»? К крышке процессора (или GPU) прилегает медный радиатор, над которым (или рядом) установлены резервуар и помпа, прогоняющая воду через него. В дальнейшем эта вода по трубке поступает в радиатор большей площади (это достигается путем разделения потока на множество мелких каналов, что улучшает охлаждение), который уже обдувается обычным вентилятором. Охлажденная таким образом вода поступает обратно к процессору или GPU и все повторяется по кругу. Как видите — абсолютно ничего сложного, схожий принцип используется для охлаждения двигателей автомобилей чуть ли не столетие.

А как работает башенный кулер? К процессору прилегают медные трубки (напрямую или через никелированный алюминий), другой конец которых соприкасается с пластинами радиатора, тепло с которых уносится потоком воздуха от вентилятора. Но просто так делать медные трубки не эффективно — они просто нагреются в области рядом с процессором, а у радиатора останутся холодными. Поэтому их делают полыми, а внутрь заливают легко испаряющуюся жидкость (спирт, ацетон, эфир) и вставляют фитиль. В итоге благодаря капиллярным эффектам такая трубка умеет работать в любом положении: жидкость, испаряясь рядом с процессором и забирая у него тепло, конденсируется на другом конце трубки у более холодного радиатора и стекает по фитилю обратно ближе к горячему «камню».

Как видите, принципы работы СВО и кулера достаточно сильно различаются: в одном случае тепло забирается благодаря испарению жидкости, в другом — благодаря ее нагреву. Различны и принципы переноса охлаждающего вещества — помпа и капиллярные эффекты. Поэтому нельзя твердо утверждать, что СВО будет гарантированно эффективнее, с чем мы ниже и столкнемся.

Теперь, когда с физикой происходящего мы разобрались, можно переходить к конкретным случаям и причинам, почему СВО не нужна для домашнего компьютера.

Для игрового ПК система водяного охлаждения — лишняя трата денег

Достаточно большое количество компьютеров собираются только для игр, и тут желание поставить СВО вполне ожидаемо: раз в сборку попадает топовый процессор, топовая память, топовая материнская плата и топовая видеокарта, то и охлаждение должно быть топовым, то есть водяным.

Какой рендер игрового ПК обойдется без СВО? Правильно, никакой.

Логика эта вполне понятна, но в ней есть один изъян — игры в большинстве своем несильно нагружают процессор: они зачастую неспособны распараллелить большое число потоков, и уж совсем в единичных случаях используют «горячие» векторные инструкции типа AVX. В итоге реальное тепловыделение процессоров в играх оказывается даже меньше, чем в спецификациях от производителя, которые пишут о 95-105 Вт для мощных CPU типа Core i9-9900K или Ryzen 7 2700X.

А с сотней ватт тепла без особых проблем справятся даже простые башенные кулеры с двумя-тремя теплотрубками: да, зачастую с ними температура будет на несколько градусов выше, но в данном случае едва ли это будет критичным: какая разница, будет на процессоре 65 градусов или 70, если критичные температуры на пару десятков градусов выше? А если учитывать, что более-менее качественные СВО стоят в 3-4 раза дороже простых «суперкулеров», то выбор в данном случае оказывается очевидным.

СВО не поможет при разгоне процессоров от Intel последних поколений

Intel уже почти 5 лет использует все тот же 14 нм техпроцесс, а вот количество ядер за это время увеличилось вдвое, да и частоты стали максимально близки к 5 ГГц. Поэтому нет ничего удивительного в том, что под серьезной вычислительной нагрузкой тот же 8-ядерный Core i9-9900K может выделять и 200, и 250, и даже 300 Вт тепла!

Казалось бы — вот оно, идеальное применение для трехвентиляторной системы водяного охлаждения, тут она точно покажет себя с лучшей стороны. Но на практике получается достаточно забавная ситуация: что с топовой СВО, что с мощным кулером такой процессор в разгоне все равно будет быстро нагреваться до 100-110 градусов и сбрасывать частоты. Что, не справляется СВО? Нет конечно, проблема лежит глубже.

После 2011 года, когда стало понятно, что процессоры AMD FX не являются конкурентами для Intel Core 2-ого поколений, компания Intel стала «мухлевать» — дескать, у пользователей все равно нет выбора, и так купят. В результате процессоры с 3-его по 8-ое поколение под крышкой имели вместо высокоэффективного припоя «пластичный термоинтерфейс», или термопасту, у которой коэффициент теплопроводности хуже на порядок! Увы — даже возврат припоя под крышку топовых процессоров 9-ого поколения не помог, ибо на нем Intel тоже сэкономила.

Что в итоге происходит? Пока поток тепла от кремниевого кристалла невелик (например, вы играете), термопаста под крышкой вполне справляется с передачей тепла и температуры оказываются невелики. Но как только вы начинаете серьезно нагружать CPU, и поток тепла увеличивается в разы, термоинтерфейс. перестает справляться с его отводом. Поэтому без разницы, чем вы будете охлаждать такой процессор — проблема лежит в прямом смысле того слова глубже.

Единственный выход из такой ситуации — это скальпирование (снятие крышки) с процессора и замена «терможвачки» на жидкий металл, у которого коэффициент теплопроводности может быть даже выше, чем у припоя. И только после этого разница между СВО и кулером станет видна, и лишь «водянки» без проблема отведут 250-300 Вт от «раскочегаренного» Core i9.

Так что если вы не горите желанием посылать под нож только что купленный за 30-40 тысяч рублей процессор — нет никакого смысла брать к нему в пару СВО вместо суперкулера, вы не увидите понижения температуры в серьезных задачах, поэтому в данном случае можно можно сэкономить и брать воздушное охлаждение.

Лишь дорогие СВО могут конкурировать с мощными башенными кулерами

Ладно, с современными процессорами от Intel все понятно. Но а что если у нас старые CPU от Intel с качественным припоем, или же современные AMD Ryzen с ним же. Имеет ли тут смысл брать СВО?

Опять же — едва ли, и причина все в той же эффективности (соотношение цены и получаемой температуры), которая у СВО в данном случае достаточно низкая. За примерами далеко ходить не нужно: возьмем популярную простую двухсекционную «водянку» Deepcool GAMMAXX L240. Она находится в топе Яндекс.Маркета, имеет хорошие отзывы покупателей и достаточно демократичную цену в 5 тысяч рублей. Вторым примером можно взять известный башенный кулер Zalman CNPS10X Performa+, который стоит почти вдвое ниже, порядка 3 тысяч рублей.

Используемый в обзоре на GECID.com процессор Core i5-2500K имеет качественный припой под крышкой и был достаточно сильно разогнан с некоторым завышением напряжения, чтобы иметь высокое тепловыделение. Температуры при этом получились очень и очень любопытными:

Получается, башенный кулер оказался и сильно дешевле СВО, и эффективнее? Да, все именно так: «водянки» не являются панацеей. Особенно если мы берем достаточно дорогой кулер и бюджетную СВО. Разумеется, если поставить в пару к такому процессору какую-нибудь трехсекционную NZXT Kraken за 15 тысяч рублей, то она окажется лучше решения от Zalman, но ответьте сами на вопрос — вы согласны отдать половину цены процессора за то, чтобы получить выигрыш в несколько градусов, который ни на что не влияет?

Получается, что СВО вообще не нужны?

Разумеется нет — они не нужны в пользовательских компьютерах. Достаточно перейти к тому же HEDT-сегменту, где процессоры с парой десятков ядер не являются редкостью, как ситуация резко меняется: так, в Hardwareluxx протестировали 24-ядерного монстра AMD Threadripper 2970WX с легким разгоном до 3.5 ГГц в паре с несколькими топовыми СВО и башенными кулерами — в таком режиме его тепловыделение уходило за 350 Вт!

И вот тут тесты показывают полный разгром кулеров: они отстают местами на 10-15 градусов, и, что самое главное, по сути с трудом справляются со своей задачей даже на максимальных оборотах, так как для этого процессора 68 градусов является максимальной рабочей температурой:

Так что, как видите, в рабочих станциях «вода» достаточно эффективна, да и стоимость СВО меркнет перед стоимостью процессора и платы для него, что делает покупку такого охлаждения имеющей смысл.

Читайте также:  Охлаждение винчестера

С процессорами понятно, а что насчет видеокарт?

На рынке продаются СВО не только для процессора, но и для видеокарты. Более того — есть даже уже готовые видеокарты с отверстиями для подключения шлангов кастомной «водянки». Отсюда следует вполне очевидный вопрос — а надо ли? Ведь тепловыделение топовых решений от Nvidia и AMD зачастую оказывается на уровне 250-300 Вт, что достаточно много, и вроде бы СВО тут лишней не будет.

Для начала разберемся с видеокартами от Nvidia. Тут компания делает достаточно жесткие правила: тепловыделение производители вольны повышать как им угодно, хоть на +50%. А вот с напряжением все плохо — оно зачастую регулируется лишь в сторону уменьшения. В итоге получается интересная ситуация: вроде по температурам все хорошо, по тепловыделению тоже, но из-за заблокированного напряжения поднять частоты выше без потери стабильности не получается. Конечно, есть кастомные VideoBIOS, где управление напряжением разблокировано, и различные аппаратные доработки самой видеокарты, но мы все же говорим об обычных пользователях, которые не будут делать действия, которые приводят к потери гарантии.


+100% к напряжению увеличивают его всего на 0.01-0.03 В — это едва ли поможет в разгоне.

В итоге мы получаем, что раз напряжение почти не меняется — тепловыделение даже у таких монстров, как 1080 Ti и 2080 Ti, в играх редко уходит за 300 Вт, и тут трехвентиляторные СО вполне справляются, удерживая температуры чипов на уровне 70-80 градусов при критичных 90+. Конечно, СВО снизит температуру, и из-за этого технология Nvidia Boost поднимает частоту на 20-50 МГц (1-2%), но опять же, едва ли стоит переплачивать за это 10-20 тысяч рублей.

С видеокартами от AMD все интереснее: компания опять же не дает трогать напряжения в сторону увеличения, но при этом самостоятельно выпускает разогнанные дальше некуда видеокарты Vega с тепловыделением в 400+ Вт, комплектуя их СВО. В данном случае это выглядит логично, но с учетом крайне неконкурентоспособной цены эти решения в основном оседают на руках коллекционеров.


Великолепное решение, которое потребляет как две RTX 2080, стоит как 2080 Ti, а по производительности слабее 1080 Ti.

В итоге с видеокартами ситуация такая же, как и с процессорами: если вы не горите желанием копаться в BIOS и аппаратно дорабатывать видеокарту для получения максимальных частот, то СВО вам не нужна абсолютно.

Надежность: механика + вода = . ?

Обычные кулеры по сути вечные: медные трубки запаяны, эфиру или спирту деваться некуда. Так что по сути основная проблема с ними — выход из строя вентилятора, который обычно без проблем меняется на такой же или похожий по размерам самостоятельно в домашних условиях.

С системой водяного охлаждения, даже необслуживаемой, все куда хуже. Во-первых, там есть дополнительный механический инструмент — помпа, и если она сломается, то с высокой долей вероятности вы пойдете за новой СВО. Во-вторых, налитая внутрь жидкость, которая обычно является водой с присадками, все-таки медленно, но реагирует с пластиковыми шлангами. Итог — медный радиатор и помпа забиваются не самой приятной на вид жижей, что резко увеличивает температуры. Так что если обычный кулер достаточно продуть сжатым воздухом раз в пару лет, и он будет без проблем работать дальше, то вот «водянку» придется разбирать, сливать раствор пластика в воде, чистить, собирать обратно и аккуратно заливать новую жидкость. Проделать это в домашних условиях, в принципе, реально, но с учетом пунктов выше нет смысла так заморачиваться.


Думаете, что синяя жидкость в шлангах выглядит красиво? Радиатор думает иначе.

Что касается протечек, то это очень и очень редкое событие: если у СВО не было заводского брака (что легко проверить, запустив ее в холостом режиме на столе), и вы не повредили шланги при установке, то скорее всего она будет вас радовать беспроблемной работой, пока не забьётся. Но, опять же, у кулеров такой проблемы нет в принципе.

Итог — башенный кулер лучше

Что в результате можно сказать про СВО в обычных ПК? Дорого, не особо эффективно и не особо надежно — но очень-очень модно. Так что если вы не собираете себе домашнюю рабочую станцию на Xeon или Threadripper, то смотрите лучше на так называемые «суперкулеры» — с ними вы как минимум выиграете по деньгам, потеряв в самом худшем случае некритичные пару градусов температуры.

Как выбрать систему жидкостного охлаждения

Что такое система жидкостного (водяного) охлаждения и зачем она нужна.

Хорошее охлаждение центрального процессора и процессора видеокарты последние десятилетия является необходимым условием их бесперебойной работы. Но греются в компьютере не только процессор и видеокарта – отдельный кулер может потребоваться микросхеме чипсета, жестким дискам и даже модулям памяти. Производители корпусов добавляют дополнительные вентиляторы, увеличивают их мощность и габариты, улучшают устройство радиаторов. И, разумеется, жидкостные системы охлаждения не могли быть обойдены вниманием.

Вообще, жидкостное охлаждение процессоров – тема не новая: оверклокеры столкнулись с недостаточной эффективностью воздушного охлаждения уже давно. «Разогнанные» до теоретического максимума процессоры грелись так, что не справлялись никакие из имевшихся тогда в продаже кулеров. Систем жидкостного охлаждения в магазинах не было, и оверклокерские форумы полнились темами о самодельных «водянках». И сегодня многие ресурсы предлагают собрать систему жидкостного охлаждения самостоятельно, но смысла в этом уже немного. Стоимость комплектующих сравнима с ценой недорогих СЖО в магазинах, а качество (и, следовательно, надежность) заводской сборки обычно все же выше кустарной.

Почему эффективность СЖО выше, чем у простого кулера?

Рассматриваемые СЖО не имеют вырабатывающих холод элементов, охлаждение происходит за счет воздуха возле системного блока – как и в случае обычного воздушного охлаждения. Эффективность СЖО достигается за счет того, что скорость теплоотвода с помощью движущегося теплоносителя намного выше, чем скорость естественного теплоотвода с помощью теплопередачи внутри металлического радиатора. Но скорость теплоотвода зависит не только от скорости движения теплоносителя, но и от эффективности охлаждения этой жидкости и от эффективности её нагревания теплом процессора. И, если первая задача решается увеличением площади радиатора, площади теплообменника радиатора и улучшением воздухообдува, то во втором случае теплообмен ограничен площадью процессора. Поэтому общая эффективность системы ограничивается эффективностью водоблока процессора. Но даже с таким ограничением СЖО обеспечивают примерно в 3 раза лучший теплосъем по сравнению с обычным воздушным охлаждением. В числах это означает снижение температуры чипа на 15-25 градусов по сравнению с воздушным охлаждением при нормальной комнатной температуре.

Конструкция СЖО

Любая система жидкостного охлаждения содержит следующие элементы:

Водоблок. Его назначение – эффективно снимать тепло с процессора и передавать протекающей воде. Соответственно, чем выше теплопроводность материала, из которого изготовлены подошва и теплообменник водоблока, тем выше и эффективность этого элемента. Но теплопередача также зависит и от площади соприкосновения теплоносителя и радиатора – поэтому конструкция водоблока важна ничуть не меньше материала.

Плоскодонный водоблокВодоблок с игольчатым дномВодоблок со змеевидным теплообменником

Поэтому плоскодонный (бесканальный) водоблок, в котором жидкость просто протекает вдоль стенки, прилегающей к процессору, намного менее эффективен, чем водоблоки со сложной структурой дна или теплообменниками (трубчатыми или змеевидными). Минусами водоблоков со сложной структурой является то, что они создают намного большее сопротивление водяному потоку и, следовательно, требуют более мощной помпы.

Помпа. Распространенное мнение, что чем мощнее помпа, тем лучше и что СЖО без отдельной мощной помпы вообще неэффективна – некорректно. Функция помпы – обеспечить циркуляцию теплоносителя с такой скоростью, чтобы перепад температур между теплообменником водоблока и жидкостью был максимальным. Т.е., с одной стороны, нагревшаяся жидкость должна вовремя выводиться из водоблока, с другой стороны – поступать в водоблок она должна уже полностью охлажденной. Поэтому мощность помпы должна быть сбалансирована с эффективностью остальных элементов системы и замена помпы на более мощную в большинстве случаев не даст положительного эффекта. Маломощные помпы часто объединены в одном корпусе с водоблоком.

– Радиатор. Назначение радиатора – рассеивать тепло, приносимое теплоносителем. Соответственно, он должен быть изготовлен из материала с высокой теплопроводностью, обладать большой площадью и быть укомплектован мощным вентилятором (вентиляторами). Если площадь радиатора СЖО сравнима с площадью радиатора процессорного кулера и вентилятор на ней установлен ничуть не мощнее, то не стоит ожидать от такой СЖО эффективности, превышающей эффективность того же кулера.

– Соединительные трубки должны быть достаточной толщины, чтобы не создавать большого сопротивления водяному потоку. По этой причине обычно используются трубки диаметром от 6 до 13 мм – в зависимости от скорости потока жидкости. В качестве материала трубок обычно используется ПВХ или силикон.

– Теплоноситель должен иметь высокую теплоемкость и высокую теплопроводность. Из доступных и безопасных жидкостей лучше всего этим условиям удовлетворяет обычная дистиллированная вода. Часто в воду добавляются присадки для снижения её коррозирующих свойств, для предотвращения размножения микроорганизмов (зацветания) и просто для эстетического эффекта (цветные присадки в системах с прозрачными трубками).

В мощных системах с большим объемом теплоносителя становится необходимым использование расширительного бачка – резервуара, в который будут уходить излишки жидкости при её термическом расширении. В таких системах помпа обычно объединяется с расширительным бачком.

Характеристики систем жидкостного охлаждения.

Обслуживаемая/необслуживаемая СЖО.

Необслуживаемая система идет с завода полностью в сборе, залитая теплоносителем и загерметизированная. Установка такой системы отличается простотой – некоторые необслуживаемые СЖО установить ничуть не сложнее, чем обычный кулер. Минусы у необслуживаемой СЖО тоже есть:

– Низкая ремонтопригодность. Трубки часто просто запаяны в неразъемные пластиковые штуцеры. С одной стороны, это обеспечивает герметичность, с другой стороны, замена поврежденного элемента такой системы может вызвать осложнения.

– Сложность замены теплоносителя обычно тоже связана с ремонтом системы – если часть жидкости вытекла, снова заполнить необслуживаемую СЖО может оказаться весьма непросто – заливочными отверстиями такие системы, как правило, не снабжаются.

– Низкая универсальность связана с неразборностью системы. Невозможно ни расширить систему, ни заменить какой-либо из её элементов на более эффективный.

– Фиксированная длина трубок ограничивает возможности по выбору места установки радиатора.

Обслуживаемые СЖО часто поставляются в виде набора элементов и установка такой системы потребует времени и некоторой сноровки. Зато и возможности по её кастомизации намного выше – можно добавлять водоблоки для чипсета и для видеокарты, менять все элементы на более подходящие для конкретного компьютера, выносить радиатор на любое (разумное) расстояние от процессора и т.д. Можно не бояться устаревания сокета (и системы охлаждения) при замене материнской платы – для восстановления актуальности потребуется только заменить водоблок процессора. К недостаткам обслуживаемых СЖО, кроме сложности установки и высокой цены, следует отнести большую вероятность протечек через разъемные соединения и большую вероятность загрязнения теплоносителя.

СЖО должна поддерживать сокет материнской платы, на которую устанавливается. И если обслуживаемую СЖО еще можно приспособить под другой сокет, купив дополнительно соответствующий водоблок, то необслуживаемая СЖО может использоваться только с теми сокетами, что перечислены в её характеристиках.

Количество вентиляторов не оказывает прямого влияния на эффективность СЖО , но большое их количество позволяет снизить скорость вращения каждого отдельного вентилятора при сохранении общего воздушного потока, и, соответственно, снизить шумность при сохранении эффективности. Будет ли СВО с большим количеством вентиляторов эффективнее – зависит от их суммарного максимального воздушного потока.

Максимальный воздушный поток считается в кубических футах в минуту (CFM) и определяет, какой объем воздуха прогоняется через вентилятор в минуту. Чем выше это значение, тем выше вклад этого вентилятора в эффективность радиатора. Размеры (длина, ширина, толщина) радиатора ничуть не менее важны – четыре мощнейших вентилятора, обдувающих простой тонкий радиатор с малой площадью пластин будут охлаждать теплоноситель ничуть не лучше, чем один вентилятор, хорошо подобранный к радиатору с большой площадью пластин.

Материал радиатора определяет его теплопроводность, т.е., с какой скоростью переданное ему тепло будет распределяться по всей площади радиатора. Теплопроводность меди почти в два раза выше, чем теплопроводность алюминия, но в данном случае эффективность радиатора больше зависит от его конструкции и площади, чем от материала..

Материал водоблока, в силу ограниченности его размеров, важнее материала радиатора. Фактически, медь является единственным приемлемым вариантом. Алюминиевые водоблоки (встречающиеся в дешевых СЖО) снижают эффективность системы настолько, что пропадает смысл использования жидкостного охлаждения.

Максимальный уровень шума зависит от максимальной частоты вращения вентиляторов. Если в системе не предусмотрена регулировка частоты вращения, на этот параметр следует обратить пристальное внимание. При наличии регулировки частоты вращения, внимание следует обратить на минимальный уровень шума.

Уровень шума выше 40 дБ уже может восприниматься как некомфортный (40 дБ соответствует обычному звуковому фону в жилом помещении – негромкая музыка, спокойный разговор). Чтобы шум вентиляторов не мешал сну, он не должен превышать 30 дБ.

Регулировка скорости вращения вентиляторов может быть ручной и автоматической. Ручная регулировка позволяет менять скорость вращения вентиляторов в соответствии с личными предпочтениями, автоматическая же подстраивает скорость под текущую температуру процессора и обеспечивает лучшие условия работы оборудования.

Тип коннектора питания может быть 3-pin и 4-pin.

3-pin коннектор не имеет отдельного провода для изменения скорости вращения вентилятора. Управлять скоростью вращения такого вентилятора можно только изменяя его напряжение питания. Не все материнские платы поддерживают этот способ. Если ваша материнская плата не может управлять скоростью вращения 3-pin вентилятора, то кулеры и двигатель помпы СЖО с 3-pin коннектором питания будут всегда вращаться на максимальной скорости. Для изменения степени охлаждения придется дополнительно покупать реобас.

4-pin коннектор предполагает управление скоростью вращения двигателей с помощью широтно-импульсной модуляции (ШИМ). При этом питание подается полное – 12 вольт – но не постоянно, а импульсами, меняя продолжительность которых, можно очень точно задавать частоту вращения двигателей. Кроме того, при таком способе нет ограничения на минимальную скорость вращения – регулируемый таким способом двигатель может вращаться даже со скоростью 1 об/мин. Единственный недостаток такого способа – он сложнее в реализации, а следовательно, дороже.

Наличие подсветки и прозрачные трубки. Футуристический вид систем водяного охлаждения и возможности их кастомизации сделали СЖО чрезвычайно популярными в среде моддеров. Производители СЖО ответили на эту популярность прозрачными трубками, подсветкой и флуоресцирующими присадками к теплоносителю. Разумеется, вся эта красота имеет смысл только при размещении в системном блоке с прозрачной крышкой.

Варианты выбора.

Если вы ищете недорогую замену огромному башенному кулеру, выбирайте среди [url=”https://www.dns-shop.ru/catalog/17a9cc9816404e77/zh >

Если вы – фанат оверклокинга и всегда разгоняете свой процессор до максимально допустимых величин, но при этом не хотите возиться с установкой и настройкой обслуживаемой СЖО, вам понадобится [url=”https://www.dns-shop.ru/catalog/17a9cc9816404e77/zh >

Читайте также:  Восстановление засохших картриджей

Если внешний вид компьютера имеет для вас не меньшее значение, чем его производительность, то [url=”https://www.dns-shop.ru/catalog/17a9cc9816404e77/zh >

Если вы не любите лишний шум или если ваш компьютер стоит в спальне – вам потребуются СЖО с пониженным уровнем шума. Такие стоят от 3000 рублей.

О системе водяного (жидкостного) охлаждения

Система жидкостного охлаждения – это такая система охлаждения, в качестве теплоносителя в которой выступает какая-либо жидкость.
Вода в чистом виде редко используется в качестве теплоносителя (связано это с электропроводностью и коррозионной активностью воды), чаще это дистиллированная вода (с различными добавками антикоррозийного характера), иногда — масло, другие специальные жидкости.

Главная разница в использовании воздушного и жидкостного охлаждения заключается в том, что во втором случае для переноса тепла вместо нетеплоемкого воздуха используется жидкость, обладающая гораздо большей, по сравнению с воздухом, теплоемкостью.

Принцип действия системы жидкостного охлаждения отдаленно напоминает систему охлаждения в двигателях автомобиля — через радиатор вместо воздуха, прокачивается жидкость, что обеспечивает гораздо лучший теплоотвод. В радиаторах охлаждаемого объекта вода нагревается, после чего вода из этого места циркулирует в более холодное, т.е. отводит тепло.

Типичная система состоит из водоблока, в котором происходит передача тепла от процессора теплоносителю, помпы, прокачивающей воду по замкнутому контуру системы, радиатора, где происходит отдача тепла от теплоносителя воздуху, резервуара (служит для заполнения системы водой и прочих сервисных нужд) и соединительных шлангов.

Поверхность соприкосновения водоблока с процессором обычно отполирована до зеркального отражения, по уже озвученным мною причинам. Через знакомый термоинтерфейс водоблок крепится на охлаждаемый объект. Обычно он крепится с помощью специальных скоб, что исключает его возможность двигаться. Бывают водоблоки и для видеокарт, но явных отличий от принципа действия процессорных водоблоков нет – все различия в креплении и форме радиатора.

Одна из частых проблем обладателей систем жидкостного охлаждения это перегрев околопроцессорно-сокетных элементов материнской платы, которые могут греться ни чуть не хуже своего старшего брата. Связано это с тем, что обычно в таких системах отсутствует циркуляция холодного воздуха. Как этого избежать? Совет, пожалуй, один – выбирайте системы (совмещайте) с дополнительным кулером, который будет охлаждать остальные греющиеся силовые элементы.

Водоблок через специальные трубки соединяется с радиатором, крепиться который может как внутри системного блока, так и снаружи (например, с задней стороны системника). Второй вариант, пожалуй, предпочтительнее. Судите сами: больше свободного места внутри системного блока, более низкая температура окружающей среды положительно влияет на радиатор. Плюс он дополнительно обдувается корпусным вентилятором.

Резервуар для жидкости, или иначе, расширительный бачок, так же может находиться снаружи системного блока. Его объем в штатных системах варьируется от 200мл до литра.

Производители систем охлаждения стараются заботиться о своих пользователях и прекрасно понимают, что для хорошей системы охлаждения место найдется внутри не каждого системного блока. Тем более, нужно учитывать, что каждый производитель как-то хочет выделиться на фоне других. Поэтому существует огромный выбор внешних систем жидкостного охлаждения (понятное дело, что без соединительных трубок с радиатором на конце никак не пренебречь). Их не стыдно выставить напоказ; обычно внутри таких систем скрывается сразу все – помпа, резервуар, продуваемый вентиляторами радиатор. Но и стоят они, обычно, демонстративно дорого.

Итог по системам водяного охлаждения

Для чего же применять жидкостные системы охлаждения? Ведь если посудить строго, то обычных штатных кулеров всегда достаточно, в обычных условиях работы ПК (если бы это было не так, то их бы не ставили, а ставили системы жидкостного охлаждения). Поэтому чаще всего такую систему следует рассматривать с позиции разгона – тогда, когда возможностей воздушной системы охлаждения будет не хватать.

Другим плюсом жидкостной системы охлаждения является возможность ее установки в ограниченном пространстве корпуса. В отличие от воздуха, трубки с жидкостью можно задать практически любые направления.

Ну и еще один плюс такой системы – ее беззвучность. Чаще всего помпы заставляют циркулировать поток воды по системе, не создавая шума больше значения в 25 дБ.

Абсолютный лидер: система жидкостного охлаждения EK-Supermacy KIT H3O 360 HFX

Сергей Лепилов

26 сентября 2012

⇡#Введение

Небольшая словенская компания EKWB уже тринадцать лет занимается разработкой и выпуском компонентов для жидкостного охлаждения для персональных компьютеров. За это время ассортимент выпускаемой продукции расширился от нескольких простеньких водоблоков до широчайшего спектра компонентов, охватывающего абсолютно всё в этой области. Особо необходимо отметить, что EKWB удаляет внимание не только выпуску основных продуктов в виде огромных радиаторов или флагманских водоблоков, но и каждому винтику в прямом и переносном смысле этого слова. Кроме того, компания идёт в ногу со временем, максимально оперативно выпуская fullcover-водоблоки для новых видеокарт, что весьма непросто, ведь обновляются они чаще, чем центральные процессоры, и имеют различные печатные платы.

Особой гордостью компании являются готовые наборы компонентов жидкостного охлаждения, в которых грамотно подобраны наиболее подходящие друг другу компоненты. В зависимости от входящих в них комплектующих, стоимость таких комплектов варьируется от 160 до 270 евро, но каждый их них включает в себя всё необходимое для организации жидкостного охлаждения самого высокого уровня. Нам на тестирование был предоставлен самый дорогой флагманский комплект EK-Supermacy KIT H3O 360 HFX. Давайте изучим его компоненты и узнаем, какую эффективность способна продемонстрировать данная система жидкостного охлаждения.

⇡#Упаковка и комплектация

Комплект системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX поставляется в компактной коробке-чемоданчике с пластиковой ручкой для переноски:

В плане оформления или информативности особыми изысками упаковка не отличается: название модели комплекта, краткое описание ключевых особенностей и перечень совместимых платформ — вот и всё, что приведено на оранжево-серой коробке. Никаких вам летающих драконов, покрытых льдом процессоров и футуристических дев, всё серьёзно.

Внутри большой коробки плотно уложены отдельные компоненты, а также дополнительные комплектующие в своих небольших упаковках:

Достав всё, удивляешься: как такая куча компонентов системы жидкостного охлаждения смогла уместиться в этой небольшой коробке? Смотрите сами, сколько всего в неё вошло:

Здесь и большой радиатор, и три 120-мм вентилятора, и отдельные коробки с помпой, водоблоком и расширительным бачком, и комплект крепления помпы, а также прочие аксессуары.

В числе последних фирменный шланг TUBE Masterkleer длиной 2 метра, внутренним диаметром 10 мм и внешним 13 мм, восемь компрессионных никелированных фитингов EK-PSC, а также 100 мл концентрата для хладагента:

Выпускается комплект в Словении (отдельные компоненты — в Китае), а его рекомендованная стоимость составляет 270 евро. Гарантийный срок равен пяти годам.

⇡#Радиатор EK — CoolStream RAD XTX 360 и вентиляторы GELID Silent 120

Основополагающим компонентом любой системы жидкостного охлаждения является радиатор. И инженеры EKWB не поскупились в этом плане, оснастив свой флагманский комплект большим радиатором EK-CoolStream RAD XTX 360. Он запечатан в отдельную коробку, столь же малоинформативную, как и основная упаковка:

Вместе с радиатором поставляются два комплекта винтов и инструкция, предупреждающая о возможном повреждении радиатора при использовании некомплектных винтов:

Разработанный специально для энтузиастов, радиатор EK-CoolStream RAD XTX 360 предназначен для систем с очень высоким уровнем тепловыделения сразу нескольких компонентов. Выглядит он следующим образом:

Как видите, радиатор довольно большой. Его размеры составляют 400х130х64 мм. Подробнее с ними можно ознакомиться по следующему чертежу:

Весит EK-CoolStream RAD XTX 360 почти полтора килограмма (1496 граммов, если точнее). И это без вентиляторов и жидкости. Массивная штука.

Конструкция радиатора классическая для этого типа — он состоит из двух алюминиевых боковин, между которыми расположены 13 медных каналов с припаянной между ними медной перфорированной «гребёнкой»:

Толщина рабочего тела радиатора равна 50 мм, а благодаря большому расстоянию между рёбрами медной гребёнки он должен оптимально справляться с охлаждением хладагента как в высокоскоростных, так и в низкоскоростных режимах работы вентиляторов. Всего на EK-CoolStream RAD XTX 360 можно установить шесть вентиляторов шириной и длиной 120 мм. Их толщина ограничена только производителями самих вентиляторов и длиной крепёжных винтов.

Сверху радиатора есть отверстие, которое можно использовать для заливки или слива охлаждающей жидкости:

В нижней части расположены два отверстия для фитингов с резьбой G 1/4:

Добавим, что радиатор рассчитан на давление 1 бар и что при отдельной покупке EK-CoolStream RAD XTX 360 будет стоить 94,96 евро.

Для установки на радиатор в комплект системы EK-Supermacy KIT H30 360 HFX входят три вентилятора EK-FAN Silent 120 типоразмера 120х25 мм. Они запечатаны в отдельных коробочках, оформленных в таком же стиле, как и все остальные компоненты системы жидкостного охлаждения:

Выглядят они вполне обычно — чёрная рамка и чёрная семилопастная крыльчатка с классическими лопастями:

При изучении наклейки на статоре выясняется, что оригинальным производителем вентиляторов является хорошо известная нам с вами компания GELID:

Скорость вращения всех трёх «вертушек» постоянна — она заявлена на отметке 1600 об/мин, хотя, по данным мониторинга, она составила 1460 об/мин. PWM-управлением или какими-либо другими методиками регулирования скорости они не оснащены. Кроме того, нет в комплекте и единого кабеля для подключения всех трёх вентиляторов к одному разъёму питания и мониторинга. Это, пожалуй, единственный недостаток всей системы. Но не будем забегать вперёд. Добавим, что срок службы гидродинамических подшипников вентиляторов заявлен на отметке 50 000 часов, или более 5,7 года непрерывной работы.

Как мы с вами только что убедились, в комплекте EK-Supermacy KIT H30 360 HFX есть чем рассеивать тепло, теперь давайте узнаем, чем его планируется быстро снять с процессора. Для этой цели в комплект системы включен водоблок EK-Supremacy, запечатанный в отдельную коробочку:

Вместе с ним поставляются четыре усилительные пластины, две ламели, набор шпилек, винтов и пружин, высокоэффективная термопаста GELID GC-Xtreme и инструкция по сборке и установке:

Сам водоблок выглядит просто, но в то же время красиво — на полупрозрачной акриловой крышке вырезаны девять кругов, в одном из которых приклеен логотип компании-производителя:

Основание закрыто бумажной наклейкой, оберегающей его от случайных царапин и повреждений. Качество обработки контактной поверхности основания великолепное:

Шестигранный Г-образный ключик, входящий в комплект поставки водоблока, поможет полностью разобрать его:

Водоблок состоит из медного основания, стальной анодированной пластины и уже упомянутой здесь акриловой крышки. Последняя имеет довольно интересную конфигурацию с регулируемой высотой центральной впускной секции:

Между крышкой и медным основанием через дополнительную прокладку устанавливаются ламели разной толщины. По умолчанию там стоит ламель под номером J1, толщиной 0,8 мм — если можно так выразиться, универсальная. Однако для процессоров конструктива LGA1155/1156 рекомендуется заменить её ламелью номер J2, толщиной 1,0 мм, а для конструктива LGA2011 необходимо применять самую тонкую версию этой прокладки с номером J3, толщиной всего 0,7 мм:

Таким образом инженеры EKWB регулируют высоту подачи охлаждающей жидкости в рабочее тело водоблока и площадь концентрации хладагента на входе в рёбра водоблока.

Что касается структуры основания водоблока, то она микроканальная, выполненная в лучших традициях систем жидкостного охлаждения:

Качество прорезанных в водоблоке каналов очень высокое, а их количество равно 54.

Добавим, что контактная поверхность основания водоблока исключительно ровная, и вина за неравномерность отпечатка на нём теплораспределителя нашего процессора целиком лежит на самом выпуклом теплораспределителе:

EK-Supremacy можно приобрести и отдельно за 59,95 евро.

⇡#Помпа EK-DCP 4.0 и комплект крепления

Третьим компонентом в системе жидкостного охлаждения EK-Supermacy KIT H30 360 HFX является помпа EK-DCP 4.0. Она также запечатана в отдельной картонной коробке:

Вместе с помпой поставляются кабель для подключения питания, две пластиковые стойки для крепления, двусторонний скотч и инструкция по установке и подключению помпы:

EK-DCP 4.0 — самая мощная из выпускаемых EKWB помп. Её производительность заявлена на отметке 800 литров в час, а высота подъема жидкости составляет 4 метра. С виду это обычная пластиковая коробочка размером 75х54х66 мм, весом 670 граммов, с двумя патрубками с резьбой для фитингов:

На небольшой наклейке видна маркировка помпы, напряжение — 12 В, и сила тока — 1,8 А:

Из прочих известных характеристик помпы отметим максимальный уровень шума 24,5 дБА и срок службы керамического подшипника 50 000 часов. При отдельной покупке данное устройство стоит 44,95 евро.

Помимо помпы, в комплект системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX входит монтажный набор EK-DCP mounting plate KIT:

В его состав включены две толстые, но мягкие прокладки, стальная монтажная пластина, винты и инструкция по установке:

С помощью данного набора помпу можно установить в любое удобное место, а демпфирующие прокладки будут способствовать снижению уровня шума.

⇡#Резервуар EK-Multioption RES X2 — 150 Basic

Наконец, последним отдельным компонентом системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX является расширительный бачок (или резервуар) EK-Multioption RES X2 — 150 Basic:

В его комплект поставки входит крепление, винты и заглушки, а также инструкция по установке:

Цилиндрический резервуар высотой 150 мм, диаметром 60 мм и весом 270 граммов выполнен из толстого акрила и прикрыт двумя пластиковыми крышками сверху и снизу:

В верхней крышке одно отверстие с резьбой под фитинг, а в нижней — три, два из которых непосредственно в основании резервуара:

Кроме этого, внутри резервуара установлена дополнительная трубка диаметром 16 мм, играющая роль своеобразного «антициклона», и предотвращающая образование пузырьков воздуха. В инструкции к резервуару подробно описана его установка с помощью входящих в комплект креплений. EK-Multioption RES X2 — 150 Basic можно приобрести не только в составе системы EK-Supermacy KIT H30 360 HFX, но и отдельно за 32,95 евро.

⇡#Совместимость и установка

Установку системы можно начать с закрепления водоблока на процессоре. EK-Supremacy совместим со всеми без исключения современными платформами, а наличие в его комплекте сменных прижимных и усилительных пластин обеспечивает надёжный прижим как к процессорам AMD, так и к процессорам Intel. На платформе с LGA2011 водоблок вообще устанавливается элементарно — даже не приходится вынимать материнскую плату из корпуса системного блока. Нужно всего лишь ввернуть шпильки в отверстия пластины процессорного разъема и равномерно прижать водоблок гайками с насечкой и пружинами:

Никаких инструментов в этом случае не требуется, как не требуется их и для вворачивания во все отверстия компрессионных фитингов.

После этого остаётся разместить все компоненты в удобных местах и соединить их шлангами. Наиболее правильная с точки зрения достижения максимальной эффективности охлаждения последовательность соединения приведена на следующей схеме:

Так как мы собирали EK-Supermacy KIT H30 360 HFX только для проведения тестов, то разместили её рядом с открытым корпусом системного блока:

После прокачки системы и удаления из контура пузырьков воздуха цвет охлаждающей жидкости постепенно менялся с бледно-зелёного (как на фото) на прозрачный зелёный. Кстати, концентрат для хладагента разводится в 900 граммах дистиллированной воды и затем заправляется в систему через, например, отверстие вверху резервуара. Никаких сложностей во время сборки системы жидкостного охлаждения EK-Supermacy KIT H30 360 HFX не возникло.

Ссылка на основную публикацию