Простая светодиодная лампа-трубка

Светодиодные трубки. Виды и работа. Устройство. Плюсы и минусы

Светодиодная трубка – отдельный тип LED-ламп, которая в качестве источника света используется светодиоды. Она используется для освещения улиц, бытовых и промышленных помещений. Широкое применения светодиодные трубки получили благодаря тому, что стали прогрессивным и экологически чистым способом освещения территорий разного назначения.

Как работают светодиодные трубки

Сам по себе светодиодный светильник – самостоятельное автономное оборудование. Корпус для него проектируется индивидуально для удовлетворения запросов той или иной модели.

По конструкции оборудование состоит из следующих основных частей:

  • Корпус из металла, который в то же время выполняет и функцию радиатора.
  • Цоколь.
  • Основная плата со светодиодами.
  • Электронный преобразователь питания – драйвер.
  • Прозрачная или полупрозрачная полусфера из пластмассы.

В народе светодиодными светильниками называют обычные светильники, в которые установлена лампа с LED-технологией. Эти два понятия необходимо различать, ведь специально спроектированные светодиодные источники света обладают гораздо более высокой эффективностью и качеством освещения по сравнению с популярными лампочками.

Длинна ламп бывает: 300 мм, 600 мм, 1200 мм, 1500 мм. Каждый вариант предназначен для своего типа светильников.

Источником света в оборудовании является светоизлучающий диод. Его принцип работы аналогичен тем процессам, которые происходят в традиционном диоде полупроводникового типа. Как только положительный потенциал передается аноду, а отрицательный переходит к катоду, внутри материала начинается движение. Отрицательно заряженные частицы стремятся присоединиться к аноду, а дырки притягиваются к катоду. Как следствие, через диод проходит электрический ток в прямом направлении.

В случае со светодиодом в процессе бомбардировки носителей заряда выделяются фотоны. Они представляют собой элементарные частицы, у которых есть свойства выделения светового диапазона.

Классификация
Основная классификация разделяет светодиодные лампы по их целевому назначению для:
  • Уличного освещения . Их устанавливают в качестве источника света для улиц, парковых зон и архитектурных объектов. Они имеют некоторые особенности в своей конструкции. Их корпус защищен от влаги и пыли, а в качестве материалов для его изготовления используют теплопроводимые материалы.

  • Производственных и офисных помещений . Исходя из их целевого назначения, к таким светильникам выдвигаются гораздо более высокие требования к качеству освещения, экономичности, эргономичности и условиям использования. Корпус делают более прочным – защищенным от вандализма, а сама конструкция оснащается саморезами, которые извлекаются только при помощи специальной отвертки. Эти меры необходимы для того, чтобы защитить устройство от несанкционированного вскрытия. Большинство современных моделей оснащаются рассеивателем из прочного поликарбоната, который по качественным характеристикам значительно превышает традиционное стекло.

  • Бытового использования . Мощность таких светильников на порядок ниже, чем у производственных и уличных аналогов. Это обусловлено тем, что такой вид светодиодных трубок используется для освещения небольших помещений – преимущественно жилых комнат. Однако к таким источникам света предъявляются высокие требования по безопасности (пожарной и электрической), качеству освещения и даже внешнему виду. К тому же, почти все домашние светильники имеют опцию замены лампы для продолжения срока эксплуатации.

Также светодиодные трубки-светильники нашли широкое применение в освещении музеев и выставок, так как они не содержат ультрафиолета в своем световом спектре.

У них есть несколько особенностей:
  • Высокая цена на лампу обусловлена тем, что она обладает сложной конструкцией и большим количеством деталей.
  • Светодиодные трубки не нужно специально утилизировать, ведь они не вредят экологии.
  • При выборе светильника необходимо обращать внимание на мерцание. Качественное устройство обеспечивает постоянное равномерное освещение без перебоев в работе.

Поиск качественной светодиодной лампы должен начинаться с проверенного производителя. Отечественные заводы по изготовлению таких источников — «Оптоган», «Navigator» и «Sveto-Led» («Newera»), а китайская промышленность поставляет на рынок — «Selecta» и «Camelion». Европейских производители — «Gauss», «Osram» и «Philips», они обеспечивают покупателей качественными светодиодными лампами с долгосрочной гарантией.

Преимущества и недостатки

Споры по поводу преимуществ и недостатков светодиодных трубок не утихают уже несколько лет. Целесообразность использования такого решения и выбор источников освещения зависит исключительно от целей и предпочтений клиента.

Светодиодные трубки характеризуются следующими преимуществами:
  • Экономят электричество. Согласно официальной статистике такие осветители потребляют в 6-7 раз меньше энергии в сравнении с традиционными лампами накаливания, и 50% от того, что требуется люминесцентным лампам.
  • Длительный срок эксплуатации. Если светодиодную трубку использовать ежедневно в неприрывном режиме, то она будет функционировать не менее 4 лет. Это самый высокий показатель среди аналогичных источников света.
  • Имеют широкий диапазон используемого для работы напряжения — от 80 до 230 В. Таким лампам не страшны перепады напряжения.
  • Экологически чистые. Такой тип ламп не содержит вредных для здоровья человека веществ. Например, популярное люминесцентное оборудование выделяет ртутные и другие опасные для жизни пары.
  • Прочность. Качественные светодиодные трубки оснащены ударостойким корпусом. Для его изготовления используют металл или керамику. Колба осветителя выполняется из крепкого пластика, устойчивого к механическим повреждениям.
  • Поддаются ремонту. В отличие от других популярных источников света этот тип можно ремонтировать, что продлевает срок его эксплуатации — (https://www.youtube.com/watch?v=5RHQzilP9A4)
  • Разнообразный световой спектр. Классические лампы с технологией накаливания излучают теплый белый свет, а люминесцентные – холодные. Это делает невозможным их использование в конкретных ситуациях. Однако современные светодиодные трубки выпускаются в нескольких формах, которые могут производить, как теплый, так и холодный свет;
  • Долгосрочная гарантия. Если закупать оборудование у официальных и проверенных поставщиков, они предоставят гарантию на осветитель сроком на 3 года – минимальный срок службы таких ламп.
Помимо преимуществ у светодиодных источников света есть и существенные недостатки:
  • Высокая стоимость. Можно купить дешевую светодиодную лампу, качество освещения и срок ее службы оставят желать лучшего.
  • Опасные для здоровья. Хоть LED-лампы и не выделяют вредные пары, они также могут спровоцировать серьезные заболевания.

Например, прямые излучения светодиодов при попадании в глаза провоцируют необратимые изменения в сетчатке. По этой причине такую технологию освещения не используют в детских садах, школах и больницах. Также была установлена взаимосвязь между лампами с холодным светом и бессонницей, поэтому врачи рекомендуют выключать все источники такого освещения минимум за час до сна.

  • Неустойчивы к высоким температурам. Такие светильники выполняются из прочных материалов, которые сложно повредить механическим способом. Однако высокая температура от +50 выводит лампу из строя. Чтобы избежать этого, стоит покупать устройство с большим металлическим радиатором.

Если судить по короткой характеристике светодиодных ламп, преимуществ у них гораздо больше, чем недостатков. При покупке качественного источника света и соблюдении правил его эксплуатации он прослужит долго и позволит сэкономить средства на электричестве.

Схема подключения светодиодных трубок Т8

Светодиодные трубки Т8 с каждым годом становятся более доступными. При новом строительстве можно использовать готовые светильники со светодиодными трубками Т8, а при реконструкции есть возможность модернизировать существующие люминесцентные.

В одной из последних статей я считал экономический эффект замены люминесцентных ламп на светодиодные трубки Т8. Рассмотрим как подключаются светодиодные трубки.

Чтобы упростить замену люминесцентных ламп типа Т8 на светодиодные трубки Т8, производители сделали у светодиодных трубок такой же цоколь (G13) как и у люминесцентных, хоть и для включения светодиодных трубок требуется лишь 2 контакта, а не 4.

Схема подключения светодиодных трубок Т8 очень простая и ничем не отличается от схемы подключения обычной лампы накаливания.

Схема подключения светодиодных трубок Т8

Для включения светодиодной трубки достаточно подать напряжение на лампу не используя никаких дополнительных устройств. В отличие от люминесцентной лампы, светодиодной лампе не требуется пускорегулирующая аппаратура (ПРА).

Если у вас имеются люминесцентные светильники с лампами Т8, то после небольшой модернизации данные светильники возможно эксплуатировать со светодиодными трубками.

Схема подключения светодиодных трубок Т8 вместо люминесцентных ламп представлена ниже:

Схема подключения светодиодных трубок Т8 вместо люминесцентных ламп

Из существующего люминесцентного светильника необходимо извлечь стартер и закоротить дроссель, т.е. требуется обеспечить подачу напряжения напрямую на светодиодную лампу.

В любой момент возможно произвести обратную модернизацию и использовать те же люминесцентные лампы, не прибегая к существенным финансовым затратам.

Для больших предприятий дешевле заказывать светодиодные лампочки оптом.

Советую почитать:

комментария 34 “Схема подключения светодиодных трубок Т8”

Там по 2 вывода с каждой стороны. По одному свободны. Они там просто так, чтобы в крепление для люминесцентной подходили?

По всей видимости сделали просто, чтобы цоколи были одинаковые и работы по замене ламп свести к минимуму.

Вообще лампы ретрофит для ЛПО/ЛВО разные бывают, прямого включения, дросельного, кроме того у некоторых производителей светодиоды находятся с одной стороны трубки, поэтому тип подключения может меняться для разных цоколей (в зависимости от того, как устанавливается в цоколь Люм лампа) снизу, светильника (если смотреть с пола на потолок), или сбоку.

А как заменить люминесцентную лампу на светодиодную в дежурных светильниках с аккумуляторами?

Дешевле будет заменить светильник

Конструкцию нужно смотреть. Возможно есть такие же трубки и на 12В. В данном случае светодиодная трубка подключается на 220В, а от аккумулятора она не будет работать.

Советую отсоединить провода от дросселя, а потом перемкнуть — у старых др-ей может пробиваться изоляция и — УЗО будет выбиваться.Лечитесь от гемороя заблаговременно.

Лампы люминисцентные на 18 Вт белого хол. свечения какой примерно мощности светодиодной будут соответствовать?

9-10 Вт. Нужно еще обращать внимание на световой поток. При одинаковой мощности у разных ламп он может быть отличаться.

А если подключить такую лампу без модернизации светильника, что из этого выйдет?

Ничего не выйдет)) Нужно исключить стартер и дроссель, ничего сложного.

Подключил по схеме, светит, но мигает как на дискотеке, какой выход?

Какой торговой марки у вас светодиодные трубки? Имеется паспорт и схема подключения?

Дроссель закоротили, стартер убрали? Подключите лампу непосредственно в любую розетку, тогда будет ясно, что лампа в порядке, а проблему нужно искать в светильнике.

Мигать может из-за встроенной в выключатель подстветки. От подсветки прийдётся отказаться.

Спасибо за хороший совет!

Подскажите, имеются ли в лампах Т8 конденсатор, варистор и предохранитель? И что будет с лампой при подаче на нее бОльшего напряжения чем заявлено, будет ли она работоспособна в последующем?

Читайте также:  Как быстро сделать корпус для подшипника

Вряд ли там имеется какая-нибудь защита.

Если есть опасность повышенного напряжения установите стабилизатор напряжения или УЗМ-51М.

Юрий, например у светодиодных ламп фирмы ASD диапазон входного напряжения 160-260 В, да и в принципе светодиодная техника в последнее время делает достаточно широкий диапазон входного напряжения, дабы исключить выход из строя из-за перепадов напряжения!

Что общего между “светодиодными трубками” и “люминесцентными лампами”?

Они выполняют одни и те же задачи: используются как источник света.

Обыкновенный светодиод, чем заморачиваемся?

Едва ли потребуется в будущем вдруг возврат от светодиодных к люминесцентным лампам ))

Не зарекайтесь. Всякое бывает. Организация, например, может внезапно обнищать и на светодиодные лампы банально не будет денег. А люминесцентные не так уж и дорого стоят, да и запасы могут какие нибудь старые всплыть. К примеру, у моей организации на данный момент нет денег не то что на люминесцентные, но и на простые накаливания

Имел возможность переоборудовать старый светильник ЛПО 1Х36.Удалил дроссель.соединил меж собой провода. Удалил стартеродержатель,соединил провода.Лампа производителя Volpe.Всавляю лампу,включаю выключатель,и ловлю короткое.Выбило автомат,что не так,ума не приложу,подскажите кто сталкивался ,заранее благодарен.

Руслан, проверьте внимательно схему подключения, там ведь ничего сложного, нужно подключить фазу и ноль к лампе, при условии что ваша лампа на 220В, как в статье.

Удалил стартеродержатель,соединил провода.

Здесь просто надо было удалить, соединять не нужно было.

Ну так да. по схеме ведь нет соединения))

При замене лампы на светодиодную в схеме. убрал стартер, дроссель не замыкал. Оставил даже конденсатор. Видел схему в интернете. Ток поступает проходя дроссель светильник работает. Что делает в этом случае дроссель. На что влияет в этой схеме дроссель?

Я бы не стал экспериментировать. Производитель дает такую схему — лучше все демонтировать и подключить по схеме.

При замене лампы на светодиодную в схеме. убрал стартер, дроссель не замыкал. Оставил даже конденсатор. Видел схему в интернете. Ток поступает проходя дроссель светильник работает. Что делает в этом случае дроссель. На что влияет в этой схеме дроссель?

При отключении схемы от сети дроссель начинает размагничиваться и в его обмотке возникает ЭДС (скачок высокого напряжения. Дальше сами.

Купил светодиодную лампу SAFFIT SBT 6010, трубка Т8 в замен люминисцентной, длиной 60 см. Спросил продавца о подключении. Говорит, прямо в светильник вместо люминисцентной можно включать. Я удивился. Включил. Каааак оно шваркнуло! Вставил в другой светильник — опять шваркнуло и автомат сработал. Теперь почитав эту статью понял, что два вывода с каждой стороны видимо закорочены, и получилось, что я сделал КЗ. Теперь придется разбирать светильник, если там не до конца всё выгорело, модернизирую его. Кстати, он без дросселя и стартера, а с электронным пускателем. Придется все там отключить и напрямую по одному проводу с каждой стороны подвести.

Как влияют оставленные в схеме дроссель и конденсатор при замене люминесцентной лампы на светодиодную?.

Год назад, Купил две светодиодные лампы с двойными маркировками:НЛ Т8 20 вт, 230 в, 50 гц, и вторая маркировка Т8/ G13, 20 w. потом буквы SQ 0340 0124. Длинные 1200 мм. Как обычные дневного ЛД и ЛБ.

Схема подключения на цоколе лампы: на одном конце лампы, где с одной стороны два вывода, — закорочены, и подаётся фаза. И с другой стороны закорочены и подаётся 0. Включение сделал через выключатель фазы.

Вместо несущей арматуры использовал хомуты для пп труб для эл.проводки, которые крепил предварительно дюбелями в потолок. На выводы лампы использовал обычные клеммы-наконечники колодочные по 10 шт в наборе. Отрезал пару на каждый торец лампы. Клеммы замыкал, как по схеме. Очень дёшево, и удобно.

Всё отлично получилось. И работали примерно 3 месяца. Потом перестали гореть.

Прозваниваю концы этих ламп, как спирали ЛБ-ЛД. Концы звонятся. ПРозваниваю провода на случай внутреннего разрыва. Тоже звонятся. Выключатель фазу подаёт и на концах также она есть. Ноль от коробки тоже прозванивается весь по схеме.

Т.е. в отдельности всё прозванивается. Подсоединяя обратно — прозванивается всё и в наконечниках, и на контактах, — но снова не горят.

Перерыл Интернет, не найду нигде диагностику неисправности таких ламп.

Быть может сможете разъяснить и помочь? Быть может светодиодные не должны звониться как лампы дневного света? Может эта цепь между контактами не должна звониться? Что-то я не понял ничего.

Чек магазина мы не сохранили. А можно было бы поменять в Леруа Мерлен или сдать. ПО карте срок гарантии у них от 1 до 3 лет.

Но чека нет. А факт, что цепь звонится, сбивает с толку. Я считаю, что должны работать. Но не работают. Почему?

СВЕТОДИОДНЫЕ ТРУБКИ

СВЕТОДИОДНЫЕ ТРУБКИ

В настоящее время на смену неоновым и люминесцентным лампам пришли светодиодные трубки и светодиодные линейки. Это позволило существенно расширить спектр и характеристики светодиодного оборудования для домашнего освещения, архитектурной декоративной подсветки , рекламных конструкций и подсветки для торговых и служебных помещений. Светодиодные трубки обладают массой преимуществ:

– большой срок службы светодиодов – до десяти лет;
– большая яркость свечения;
– низкое энергопотребление;
– отсутствие вредных компонентов;
– электробезопасность;
– чистота и разнообразие цветов;
– свет без ультрафиолетовой и радиоактивной составляющей;
– отсутствие мерцания и задержки при включении;
– широкий ассортимент размеров и конфигураций;
– работают без стартеров, балластов и ЭПРА.

Особенно следует остановиться на надёжности и безопастности светодиодных трубок, они обладают нужным классом защиты для работы в уличных условиях, ведь для питания им не нужно больших сетевых напряжений – 220В, а достаточно 12 В. К тому-же они обладают большой механической и ударной прочностью.

Конструктивно светодиодная трубка представляет собой герметичную трубку из поликарбоната, диаметром пару сантиметров и длиной до метра. В каждой трубке установлены источники света – несколько десятков, то и сотен SMD светодиодов средней мощности. На концах трубки есть выводы соединительного провода, для подключения блока питания или соединения между собой – образовывая целые осветительные секции.

Стандартная светодиодная трубка имеет такие параметры:

– Количество и тип светодиодов – 50-100 шт. SMD

– Потребляемая мощность – 10-15 Вт

– Напряжение питания – 12 В

– Световой поток – 500 лм

– Светоотдача – 70 лм/Вт

– Цветовая температура: 4000-8000 К

– Габаритные размеры – 1000х25мм

Параметры некоторых других моделей светодиодных трубок представленных в продаже:

МодельРазмер, ммLED, штLED типМощностьLuminousЦвет. темпер.Питание, В
TD81211200х25240SMD352816W1550 lm4000-4500KAC100

120V

TD81511500х25300SMD352820W1900 lm4000-4500KAC100

120V

TA5063600х15120SMD352811W750 lm4000-4500KAC100

120V

TA51231200х15240SMD352821W1300 lm4000-4500KAC100

120V

TA51531500х15300SMD352826W1900 lm4000-4500KAC100

120V

TD01211200х30240SMD352816W1550 lm4000-4500KAC100

120V

TD01511500х30300SMD352820W1900 lm4000-4500KAC100

120V

Области применения светодиодных трубок охватывают все сферы: дома и квартиры, промышленные предприятия, офисные помещения и бизнес, отели, гостиницы, клиники, медучреждения, школы, университеты и другие учебные заведения.

Учитывая, что в свободной продаже светодиодные трубки пока ещё встречаются редко, для уточнения их цены стоит посетить интернет магазины.

Схема подключения светодиодных ламп вместо люминесцентных

Люминесцентные лампы, благодаря своим революционным, для своего времени, характеристикам: низкому энергопотреблению, высокой световой эффективности и долгому сроку службы, получили очень широкое распространение.

Именно трубчатые лампы дневного света освещают большинство школ, больниц, офисов, цехов и т.д., наиболее часто они установлены в растровых светильниках, знакомых каждому.

Главным недостатком люминесцентных ламп является наличие внутри них ртути, пары которой смертельно опасны для человека.

Но технологии не стоят на месте, их активное развитие привело к созданию светодиодных ламп, которые превзошли практически по всем показателям люминесцентные. В настоящее время, единственным их недостатком является стоимость в сравнении с лампами дневного света, по сумме же всех характеристик и выгод, а главное по соображениям безопасности, они вне конкуренции.

Менять старые люминесцентные светильники целиком на аналогичные светодиодные не выгодно, хотя бы просто экономически, лучше просто заменить лампы, ведь производители давно уже выпускают трубчатые светодиодные лампы Т8 под цоколь G13 и можно установить их, оставив старый корпус светильника, лишь немного модернизировав его.

Чтобы поставить светодиодные лампы вместо люминесцентных, необходимо несколько доработать светильник, сделать его проще, убрав из схемы подключения несколько лишних компонентов. Сейчас я подробно покажу как это легко сделать самому.

В первую очередь давайте рассмотрим схемы стандартных растровых светильников, рассчитанных на установку четырех люминесцентных ламп, такие чаще всего монтируются в потолки, типа «армстронг».

Их всего две разновидности, две различных схемы, первая с балластом и стартером, встречается чаще всего:

Вторая схема более современная, с электронным пускорегулирующим аппаратом:

Как видите, светильники с люминесцентными лампами, содержат внутри различное дополнительное оборудование, которое требуется для их работы. Подробнее читайте об этом в материале – Схема подключения люминесцентных светильников

В современных же трубчатых LED лампах, в частности т8 под цоколь g13, драйвер, необходимый для того, чтобы светодиоды горели, уже встроен в корпус самой лампы и дополнительно устанавливать что-то не требуется.

Соответственно, переделка любого люминесцентного светильника, сводится к демонтажу всего лишнего оборудования: балласта, стартера, эпра и т.д. и подключению питания напрямую к контактам LED лампы. Для обоих типов светильников, схема подключения общая, все зеленые проводники на схеме, подключаем к нулевому проводу, а все красные к фазному, должно получится примерно так:

Схема подключения светодиодных ламп вместо люминесцентных

И еще раз, все достаточно просто, с одной стороны к ламам подводится фаза, а с другой ноль. При этом полярность не важна, так как подключается переменный ток, подсоединяйте так, как вам будет удобнее. Кроме того, не важно к какому из контактных штырьков подключается электрический провод, ведь их каждая пара, с каждой стороны LED лампы, замкнута.

В случае переделки растрового люминесцентного светильника, мы просто берем провода, которые идут от цоколей g13 и обрезаем их, а затем все провода одной стороны подключаем на фазную клемму, а все провода другой, на нулевую. В итоге должно получится примерно следующая схема установки led ламп вместо ламп дневного света:

Как видите, технология простая, не нужно обладать каким-то особым образованием, чтобы перевести на светодиодные лампы, допустим, все люминесцентные светильники в офисе, на производстве или в магазине.

Кстати, как монтировать и подключать люминесцентный светильник, а главное как устанавливать трубчатые лампы т8 – мы писали в статье “Подключение люминесцентного светильника”

В результате такой переделки, вы получаете новый, современный светодиодный светильник, безопасный, с низким энергопотреблением и долгим сроком службы.

Помните, что старые люминесцентные лампы нельзя просто выбросить или, хуже того, просто разбить, их необходимо обязательно утилизировать , ведь они содержат ртуть. В каждом крупном городе есть центры, куда вы сможете сдать свои энергосберегающие лампы, нередко совершенно бесплатно.

Выбираем светодиодные лампы т8 G13

Как показывает моя практика, многие не знают, что при эксплуатации растровых светильников нет необходимости покупать новые, чтобы установить светодиодное освещение. Наиболее простой и эффективный способ, это модернизация светодиодными лампами т8 на 600 мм и 1200 мм.

Такие потолочные светильники распространены в офисах, магазинах, и офисных помещениях. Как правило, они монтируются в подвесной потолок Армстронг. Но кроме встраиваемых существуют и накладные модели. В настоящее время они уже устарели и слишком толстые. Их заменили новые диодные толщиной всего 1 см, удобно устанавливать накладным видом монтажа.

  • 1. Разновидности ламп Т8
  • 2. Выгода замены на светодиодные
  • 3. Типы по схеме подключения
  • 4. Лампы T5
  • 5. Простая модернизация светильника
  • 6. Стоимость модернизации
  • 7. Видео по замене
  • 8. Пример цен

Разновидности ламп Т8

Разновидности колбы

Лампы Т8, так же маркируются G13, еще называются, как светодиодные трубки T8. Внешне это тоже трубка, выполненная из матового или прозрачного поликарбоната, но начинка состоит из светодиодов. По габаритам полностью соответствуют люминисцентным, стандартные размеры 600 мм, 900 мм, 1200 мм.

Конструктивно они бывают двух типов:

  • драйвер устанавливается внутри трубки под led диодами, соответственно, она питается напряжением 220В;
  • используется внешний драйвер, как от светодиодной ленты, питается напряжением 12В.

Встроенный драйвера для моделей на 220 вольт

По исполнению колбы делятся на 3 вида:

  1. прозрачная, потери 0%;
  2. полупрозрачная, сатинато, потери 10%;
  3. матовая, не прозрачная, потери света в среднем 20%.

Колба изготавливается из акрилового пластика или поликарбоната, что придает хорошую механическую прочность.

Стандартные размеры:

  • 300мм. для настольных;
  • 600мм. для потолочных светильников Армстронг;
  • 900мм.;
  • 1200мм.

Световой поток растет пропорционально длине, длина увеличилась в 2 раза, светит в 2 раза ярче.

Цветовая температура

По цветовой температуре такие же характеристики, как у светодиодных ламп:

  1. теплый белый свет;
  2. нейтральный белый, дневной;
  3. холодный, голубоватый по сравнению с теплым.

Из этих вариантов самый лучший, это нейтральный дневной свет, глаза лучше всего его воспринимают, белый лист бумаги будет реально белым и не будет желтить как от теплого.

Выгода замены на светодиодные

Давайте посчитаем, насколько выгодно устанавливать новые диодные вместо люминесцентных. Учитываем, что они ставятся на подвесной потолок Армстронг и светят во все стороны. Из-за ограниченности габаритов самого корпуса, корпус трубки затеняет свой отраженный свет. Расчет составил специалист-электрик, у него более обширный опыт в этом.

Проведем простой расчет для газоразрядных, в котором будут участвовать:

  • КПД всего люминесцентного от 70%
  • коэффициент затенения светового потока при отражении от зеркального рефлектора, 0,6-0,7;
  • эффективность источника света 50-60 Лм/Вт.;
  • срок службы не более 18.000 часов.

Для диодных эти значения будут соответственно:

  • КПД 90% зависит от блока питания;
  • 0,9 потому что светит только вниз;
  • 100-120 Лм/Вт для средней ценовой категории;
  • до 50.000 часов, после этого периода яркость снизится до 70% от первоначального.

Используя вышеуказанные коэффициенты, вы можете самостоятельно провести расчеты. Диодный источник света получается в 2 раза эффективней и экономичней только по электрическим параметрам. Если учитывать срок эксплуатации, то в конечном итоге превосходство новых технологий будет в 4 раза.

При низких температурах эффективность газоразрядных источников падает, а у диодных растет. Этот фактор следует учитывать при расчетах.

Какие лампы T8 выбрать?

Большое количество читателей спрашивают, какие лампы выбрать и где лучше покупать. Если вас интересуют качественные и проверенные светодиодные лампы T8, то рекомендую покупать Philips. Они обеспечивают европейское качество, требования в Европе к лампам гораздо строже. Philips не завышают характеристики, как это делают отечественные бренды.

Я проверил множество магазинов в поисках оптимального соотношениz цены и качества. Лучшим оказался магазин дискаунтер Sibertek.ru Интернет-магазин люстр и светильников Первый дискаунтер в России, оптовые цены в розницу.

Типы по схеме подключения

Установка и подключения светодиодных трубок T8

Заранее определим, что ПРА –это пускорегулирующий аппарат, то же что блок розжига у ксенона. ЭПРА – это электронная версия выполняющая функцию запуска.

По схеме подключения делятся на 3 вида:

  1. обычное подключение вместо стандартных люминисцентных, как правило они совместимы только со старым электромагнитным балластом и нельзя устанавливать с электронным;
  2. ПРА убирается и трубка подключается напрямую к 220В;
  3. ПРА демонтируется, новые лед лампочки питаются от дополнительного блока питания на 12В.

Фактически модель со встроенным драйвером это полноценный осветительный прибор, которому требуется только розетка на 220В и провод. Поэтому могут комплектоваться электрическими проводами со специальным штекером и включателем.

Все варианты подключения со встроенным драйвером

Подключение проводов зависит от модели, уточняйте перед покупкой:

  • подключение с левой стороны;
  • с правой;
  • с обеих сторон.

Лампы T5

Отличие Т5 (вверху) от Т8. Комплект проводов для отдельного подключения

Лампы T5, это разновидность T8. Широкое применение нашли в торговых прилавках особенно с холодильниками. Длинный источник света подходит к аквариуму, иногда ставят светодиодные ленты или линейки, но они не защищены от брызг. К тому же рыбка может попытаться оторвать светодиод, приняв его за корм.

Простая модернизация светильника

Пример замены на ленты

Кроме стандартных типов установки диодных ламп G13 T8 у меня есть и собственные разработки, которые вы можете повторить своими руками. Мой способ в 2-3 раза дешевле, но немного сложней. Основан на использовании led лент и блоков питания на 12В. Внешний вид получится другой, но ничем не хуже. Часто ли вы смотрите на потолок в помещении? К тому же их закрывают решетками, чтобы не слепили.

В корпусе растрового светильника установлен отражатель на основании, который и задействуем.

  1. убираем люминесцентные трубки;
  2. убираем начинку ПРА;
  3. на отражатель клеим светодиодную ленту SMD 5050 плотность 60 LED на метр;
  4. клеим 8 отрезков по 50 см;
  5. объединяем питание;
  6. устанавливаем и подключаем блок питания.

Паспортная яркость стандартного 3600 Люмен, с учетом потерь получается около 650 Лм от одной трубки. 1 метр на led диодах СМД 5050 дает около 700 Люмен. Чтобы не клеить 8 отрезков по 50 см, можно использовать ленту двойной ширины, получится 4 отрезка.

Такая модернизация повышает ремонтопригодность и значительно удешевляет её. Даже если led диод выйдет из строя, погаснет толь сегмент из 3 светодиодов.

На один доработку одного потребуется 4 метра, 700 Люмен на 1м. получится 2800 Лм, немного поменьше, но незначительно. Можно использовать и более мощный вариант, например лед линейки на SMD 5630 и 5730. Их потребуется только 150см., 3 шт. по 50см.

Стоимость модернизации

Начинка и и алюминиевый профиль для охлаждения

Посчитаем, какую выгоду мы получим при самостоятельной модернизации.

Проведем расчет переделки.

  • цена ленты 135 р./м.;
  • 4м. стоят 540 р.. этого хватит на замену 4 трубок;
  • при обычном способе это выйдет от 1200р., при минимальной цене одной 300р.

Чтобы не устанавливать по 1 одному блоку у каждого, установим 1 источник питания на 4-6 светильников.

Посчитаем для офиса на 6 люминесцентных штук.

  • мой способ: 540 * 6 = 3240р., плюс 1000р. на блок питания;
  • обычный: 8400р.;
  • итого: мой от 4240р., обычный от 8400р.

Конструкция стандартного светильника, съемный отражатель отдельно

Процедура поклейки очень простая:

  1. протереть место установки;
  2. аккуратно приклеить;
  3. на концы одеть соединители или припаять провода;
  4. соединить все плюсы и минусы вместе.

С этим справиться любой, кто хоть раз в жизни держал паяльник или менял лампу T8 G13. А у кого с этим совсем плохо, то в радиолюбительских магазинах продают готовые комплекты с готовой пошаговой инструкцией по замене на диодные линейки.

Видео по замене

Зарубежный коллега расскажет и покажет вам, как правильно провести замену на диодные. Всё показано очень детально и будет понятно без слов и перевода.

Пример цен

Пример цен из хорошего интернет-магазина

Остерегайтесь китайских изделий без указанного производителя. Китайцы обманывают во всем, что касается светодиодов. Используют свой излюбленный способ, в стандартный корпус led диода устанавливают слабый кристалл, мощность которого меньше в 3-5 раз по сравнению с фирменным. А на изделии пишут характеристики, как будто установлены брендовые светодиоды.

Но на отечественном рынке есть недорогие и хорошие модели с доступной ценой от 290р. за 1 шт.

Но самый оптимальный способ, это продать установленные старые растровые потолочные светильники и заменить их современными светодиодными панелями. Их толщина 1-3см. а стоимость при мелкооптовой закупке от 1000р. за модель на 3600 Лм. с японскими качественными диодами.

Думаю, бывают также LED лампы для других напряжений (не только 220 и 12 В).
В нашем доме произвели модернизацию электроснабжения с использованием диодной схемы. При этом напряжение существенно снизилось. Лампы накаливания светят в «полсилы». Старые люминесцентные лампы вообще не запускаются.
Недавно установили новые LED-светильники, и я посмотрел характеристики, указанные на упаковке: напряжение: 17-260 В.
Вот так.

Есть комплекты для замены люминесцентных на светодиодные линейки, они дешевле готовых ламп.

Простая светодиодная лампа своими руками

Внимание! Данная конструкция не имеет гальванической развязки от высоковольтной сети переменного тока. Строго соблюдайте технику безопасности. При повторении конструкции Вы всё делаете на свой страх и риск. Автор не несёт никакой ответственности за Ваши действия.

В статье рассмотрена конструкция светодиодной лампы с питанием от сети переменного тока с напряжением до 240 В и частотой 50/60 Гц. Данная лампа мне служит уже более двух лет и я хочу поделится с Вами этой конструкцией. Лампа имеет очень простую схему ограничения тока, что даёт возможность повторения конструкции начинающим радиолюбителям. Она имеет небольшую мощность и может применяться в качестве ночника или для подсветки помещения, где не нужна большая яркость свечения, но важен такой фактор, как низкое энергопотребление и долгий срок службы. Её можно повесить в подъезде или на лестничной площадке и не переживать о выключении или высоком расходе электричества – срок её службы практически ограничен сроком службы применённых светодиодов, так как данная лампа не имеет импульсного преобразователя, которые часто выходят из строя быстрее самих светодиодов, а радиоэлементы здесь подобраны таким образом, что не превышаются номинальные напряжения и рабочие токи как конденсаторов с диодами, так и самих светодиодов даже при максимальном допустимом напряжении и частоты в питающей электросети.

Лампа имеет следующие характеристики:

Напряжение питания:до 240 В
Частота питающей сети:50/60 Гц
Потребляемая мощность:не более 1,8 Вт
Количество светодиодов:9 штук
Общее число кристаллов:27 единиц
Тип преобразования:с гасящим конденсатором

В лампе использованы трёхкристалльные светодиоды тёплого белого свечения типа smd5050:

При протекании номинального тока 20 мА на одном кристалле светодиода падает напряжение порядка 3,3 В. Это основные параметры для расчёта гасящего конденсатора для питания лампы.

Кристаллы всех девяти светодиодов соединены последовательно друг с другом и таким образом через каждый кристалл протекает одинаковый ток. Этим достигается одинаковое свечение и максимальный срок службы светодиодов и следовательно всей лампы. Схема соединения светодиодов показана на рисунке:

После спаивания получается вот такая светодиодная матрица:

Вот так это выглядит с лицевой стороны:

Представляю Вам принципиальную схему данной светодиодной лампы:

В лампе используется двухполупериодный выпрямитель на диодах D1-D4. Резистор R1 ограничивает бросок тока во время включения лампы. Конденсатор C2 является фильтрующим и сглаживает пульсации тока через светодиодную матрицу. Для данного случая его ёмкость в микрофарадах примерно можно рассчитать по формуле:

где I это ток через светодиодную матрицу в миллиамперах и U – падение напряжения на ней в вольтах. Не стоит гнаться за слишком большой ёмкостью этого конденсатора, так как токогасящий конденсатор играет роль ограничителя тока, а подключённая светодиодная матрица является стабилизатором напряжения.

В данном случае можно использовать конденсатор ёмкостью 2,2-4,7 мкФ. Параллельно ему установленный резистор R3 обеспечивает полную разрядку этого конденсатора после выключения питания. Резистор R2 играет ту же роль для токогасящего конденсатора C1. Теперь главный вопрос – как рассчитать ёмкость гасящего конденсатора? В интернете есть много формул и онлайн калькуляторов для этого, но все они занижали результат и давали более низкую ёмкость, что подтвердилось на практике. При использовании формул с различных сайтов и после применения онлайн калькуляторов в большинстве случаев получилась ёмкость 0,22 мкФ. При установке же конденсатора с данной ёмкостью и при замере протекающего через светодиодную матрицу тока был получен результат 12 мА при напряжении сети 240 В и частоты 50 Гц:

Тогда я пошёл более длинным путём и сначала рассчитал необходимое гасящее сопротивление, а затем вывел ёмкость гасящего конденсатора. За исходные данные мы имеем:

  • Напряжение питающей сети: 220 В. Возьмём максимально возможное – 240 В.
  • Частоту сети я взял в 60 Гц. При частоте в 50 Гц через матрицу будет протекать меньший ток и лампа будет светить менее ярче, но, зато будет запас.
  • Напряжение, падающее на светодиодной матрице составит 27*3,3=89,1 В, так как у нас 27 последовательно включённых светодиодных кристаллов и на каждом из них будет падать примерно 3,3 В. Округлим это значение до 90.
  • При максимальной частоте 60 Гц и напряжении в сети 240 В, протекающий через матрицу ток, не должен превышать 20 мА.

В расчётах используются действующие значения токов и напряжений. По закону Ома гасящее сопротивление должно составлять:

где Uc – напряжение в сети (В)

Um – напряжение на светодиодной матрице (В)

Im – ток через матрицу (A).

Так как в качестве гасящего сопротивления мы используем конденсатор, то Xc = R и по известной формуле для ёмкостного сопротивления:

вычисляем необходимую ёмкость конденсатора:

где f – частота питающей сети (Гц)

Xc – необходимое ёмкостное сопротивление (Ом)

Напоминаю, что полученное в данном случае значение ёмкости конденсатора справедливо для частоты питающей сети 60 Гц. Для частоты же 50 Гц по расчётам получается значение 0,42 мкФ. Для проверки справедливости я временно поставил два параллельно соединённых конденсатора по 0,22 мкФ с получившейся суммарной ёмкостью в 0,44 мкФ и при замере протекающего через светодиодную матрицу тока было зафиксировано значение в 21 мА:

Но для меня была важна долговечность и универсальность и по расчёту на частоту 60 Гц с результатом необходимой ёмкости в 0,35 мкФ я взял близкий номинал с ёмкостью в 0,33 мкФ. Вам так же советую брать конденсатор немного меньшей ёмкости, чем расчётная, что бы не превышать допустимый ток используемых светодиодов.

Далее подставив формулу для расчёта сопротивления в формулу для определения ёмкости и сократив всё выражение я вывел универсальную формулу в которую, подставив исходные значения, можно вычислить необходимую ёмкость конденсатора для любого числа светодиодов в лампе и любого питающего напряжения:

Окончательная формула принимает следующий вид:

Где C – ёмкость гасящего конденсатора (мкФ)

Id – допустимый номинальный ток применяемого в лампе светодиода (мА)

f – частота питающей сети (Гц)

Uc – напряжение питающей сети (В)

n – количество используемых светодиодов

Ud – падение напряжения на одном светодиоде (В)

Может быть кому то будет лень производить эти расчёты, но по этой формуле можно определить ёмкость для любой светодиодной лампы с любым числом последовательно соединённых светодиодов любого цвета. Можно например сделать лампу из 16 красных светодиодов подставляя в формулу соответствующее красным светодиодам падение напряжения. Главное придерживаться разумных пределов, не превышать количество светодиодов с общим напряжением на матрице до напряжения питающей сети и не использовать слишком мощные светодиоды. Таким образом можно изготовить лампу с мощностью до 5-7 Вт. В противном случае может понадобиться конденсатор слишком большой ёмкости и могут возникнуть сильные пульсации тока.

Вернёмся к моей лампе и на фотографии ниже показаны радиоэлементы, которые я использовал:

У меня не нашлось конденсатора ёмкостью 0,33 мкФ и я поставил параллельно включённых два конденсатора с ёмкостью 0,22 и 0,1 мкФ. С такой ёмкостью протекающий через матрицу ток, будет немного меньше расчётного. Фильтрующий конденсатор в моём случае на напряжение 250 В, но я настоятельно рекомендую использовать конденсатор на напряжение от 400 В. Хотя падение напряжения на моей светодиодной матрице и не превышает 90 В, но в случае обрыва или перегорания хоты бы одного из светодиодов напряжение на фильтрующем конденсаторе достигнет амплитудного значения, а это более 330 В при действующем напряжении в питающей сети 240 В. (Ua = 1,4U)

В качестве корпуса я использовал часть компактной энергосберегающей люминесцентной лампы вытащив из неё электронную начинку:

Плату я выполнил навесным монтажом и она с лёгкостью поместилась в указанный корпус:

Светодиодную матрицу я приклеил двойным скотчем к круглому куску гетинакса, который привинтил к корпусу двумя винтами с гайками:

Так же я сделал небольшой рефлектор, вырезав его из жестяной банки:

Я провёл реальные измерения при напряжении в питающей сети 240 В и частоте 50 Гц:

Постоянный ток через светодиодную матрицу принял значение 16 мА, что не превышает номинального тока используемых светодиодов:

Так же я разработал печатную плату под радиоэлементы в программе Sprint-Layout. Все детали поместились на площади 30Х30 мм. Вид данной печатной платы Вы можете видеть на рисунках:

Я предоставил эту печатную плату в форматах PDF, Gerber и Sprint-Layout. Вы свободно можете скачать указанные файлы. Хотя на схеме и указаны диоды КД105, но так как в настоящее время они являются редкостью, то печатная плата разведена под диоды 1N4007. Так же можно использовать другие выпрямительные диоды средней мощности на напряжение от 600 В и на ток в 1,5-2 раза больший тока потребления светодиодной матрицы. Дам рекомендацию на счёт сборки этой матрицы. Все светодиоды лицевой стороной я временно приклеил к малярному скотчу и спаял все выводы согласно схеме, после чего готовую матрицу со стороны выводов приклеил на двусторонний скотч и снял бумажный малярный скотч с лицевой стороны. Если у Вас будет возможность, я рекомендую расположить светодиоды на большем расстоянии друг от друга, так как они будут выделять тепло и от близкого расположения могут перегреваться и быстро деградировать.

Лично у меня эта лампа светит по семь часов в день уже третий год и пока не было никаких проблем. К статье прилагаю также таблицу Exsel с формулой для расчёта. В ней просто нужно подставить исходные значения и в результате получите необходимою ёмкость гасящего конденсатора. Всем ярких и долговечных лампочек. Оставляйте отзывы и делитесь статьёй, так как в интернете много неправильных формул и калькуляторов дающих неверный результат. Здесь же всё проверено опытом и подтверждено временем и реальными измерениями.


Ссылка на основную публикацию