Неньютоновская жидкость

Свойства неньютоновских жидкостей

Здравствуйте!

Позвольте представить юного эксперта Стаса. Он очень любит экспериментировать, познавать все новое в своей домашней лаборатории.

Сегодня специально для читателей Занимательной науки он поведает о свойствах неньютоновских жидкостей. Прошу любить и жаловать. Слово Стасу.

Свойства неньютоновских жидкостей

Жидкость в окружающем нас мире встречается повсеместно. Свойства жидкостей знакомы каждому и любой человек, взаимодействующий с ними, в той или иной степени может предугадать, как поведет себя какая-либо жидкость в конкретной ситуации.

Жидкости, свойства которых мы привыкли наблюдать в ежедневном использовании, подчиняются закону Ньютона, называются ньютоновскими.

Ньютоновская жидкость, вязкая жидкость, жидкость, подчиняющаяся при своём течении закону вязкого трения Ньютона.

Еще в конце XVII века великий физик Ньютон обратил внимание, что грести веслами быстро гораздо тяжелее нежели, если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее.

Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействием, но даже и звуковыми волнами. Чем сильнее воздействие на обычную жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее. Вязкость неньютоновских жидкостей возрастает при уменьшении скорости тока жидкости. Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры.

К изучению этой интересной темы меня подвело посещение научно-популярной выставки «Прикоснись к науке», где один из экспериментов был посвящен неньютоновским жидкостям. Эксперимент произвел на меня большое впечатление и мне захотелось побольше узнать об удивительных свойствах жидкостей, противоречащих законам физики.

В домашних условиях мне удалось не только повторить увиденное, но и подробнее изучить данное явление, проводить много дополнительных экспериментов и придумать свои способы применения данной жидкости.

Один из опытов проведенных мной – опыт с крахмальной водой.

Твёрдая жидкость.

Я взял равные части крахмала и воды, перемешал до однородного вязкого состояния. После этого получил смесь, похожую на сметану.

Но отличие этой смеси от обычной жидкости в том, что она, может быть одновременно и твердой и жидкой. При плавном воздействии – смесь жидкая, а если взять ее в руку и с силой сдавить – из нее можно слепить комок, «снежок», который тут же «растает».

Вывод: Если на эту жидкость с силой воздействовать,то она приобретает свойства твердого вещества.

По этой жидкости можно даже бегать, но если замедлить действие, то человек сразу же погружается в жидкость.

Свойства этой жидкости в скором времени планируют использовать для временного ремонта дорожных ям.

Что же происходит с неньютоновскими жидкостями?

Частицы крахмала набухают в воде и формируются контакты в виде хаотически сплетенных молекул.

Эти прочные связи называются зацеплениями. При резком воздействии прочные связи не дают молекулам сдвинуться с места, и система реагирует на внешнее воздействие, как упругая пружина. При медленном воздействии зацепления успевают растянуться и распутаться. Сетка рвется и молекулы расходятся.

Юные ученые, дорогие родители, уважаемые бабушки и дедушки. Сегодня Стас показал и рассказал вам о необычной жидкости, которая имеет поразительные свойства и может называться “твердая жидкость”. Вам понравилось? Тогда переходите в раздел “Эксперименты”. Там вы найдете опыты, фокусы и эксперименты по душе. Те, которые можно сделать дома и удивить всех. А для вас и ваших деток у нас открыт новый раздел “ПочеМук”. В нём мы отвечаем на самые интересные коварные и каверзные научные вопросы — пишите нам.

Очень жду комментарии и фото экспериментов!

Ваш Стас

Забегайте в мою ЛабораториЮ !

В чём разница?

Разница между Ньютоновской и Неньютоновской жидкостью

Ключевое различие между Ньютоновской и Неньютоновской жидкостью заключается в том, что Ньютоновские жидкости имеют постоянную вязкость, тогда как Неньютоновские жидкости имеют переменную вязкость.

Все жидкости можно разделить на ньютоновские, и неньютоновские в зависимости от вязкости жидкости. Вязкость — это состояние густоты и вязкости из-за внутреннего трения жидкости. Кроме того, необходимо учитывать другие параметры при определении, является ли жидкость Ньютоновской или Неньютоновской. Такими параметрами является напряжение сдвига и скорость сдвига. Напряжение сдвига — это напряжение, приложенное в одной плоскости к поперечному сечению жидкости, тогда как скорость сдвига — это скорость изменения скорости, при которой один слой жидкости проходит над соседним слоем.

Содержание

  1. Обзор и основные отличия
  2. Что такое Ньютоновская жидкость
  3. Что такое Неньютоновская жидкость
  4. Разница между Ньютоновской и Неньютоновской жидкостью
  5. Заключение

Что такое Ньютоновская жидкость?

Ньютоновская жидкость представляет собой жидкость, имеющую постоянную вязкость и нулевую скорость сдвига при нулевом напряжении сдвига. Это значит что скорость сдвига такой жидкости прямо пропорциональна напряжению сдвига. Другими словами, отношение напряжения сдвига к скорости сдвига является постоянным во всей жидкости.

Однако большинство известных нам жидкостей имеют переменную вязкость. Обычно реальные жидкости не соответствуют этому определению. Поэтому он рассматривается как простая математическая модель. Но мы можем принять некоторые распространенные жидкости, такие как вода, как ньютоновские жидкости.

Название Ньютоновская жидкость происходит от Исаака Ньютона, который был первым ученым, использовавшим дифференциальное уравнение для постулирования взаимосвязи между напряжением сдвига и скоростью сдвига у жидкостей.

Что такое Неньютоновская жидкость?

Неньютоновские жидкости — это жидкости, которые имеют переменную вязкость и переменную зависимость от напряжения сдвига. Они так называются, так как эти жидкости не следуют закону вязкости Ньютона. Вязкость этих жидкостей может изменяться под действием силы, то есть некоторые жидкости, становятся более жидкими при встряхивании. Большинство известных нам жидкостей — это неньютоновские жидкости. Многие солевые растворы, расплавленные полимеры и многие другие жидкости относятся к этой группе жидкостей в зависимости от вязкости. Яркий пример Неньютоновской жидкости это крахмал разведённый с водой.

Хотя мы используем термин вязкость в механике жидкости для описания сдвиговых свойств жидкости, этот параметр неполностью описывает свойства неньютоновских жидкостей. Существуют различные поведенческие характеристики неньютоновских жидкостей, включая вязкоупругость, зависящую от времени вязкость и другие характеристики.

В чем разница между Ньютоновской и Неньютоновской жидкостью?

Все жидкости классифицируются на два типа в зависимости от вязкости как Ньютоновские жидкости и Неньютоновские жидкости. Основное различие между Ньютоновскими и Неньютоновскими жидкостями заключается в том, что Ньютоновские жидкости имеют постоянную вязкость, тогда как Неньютоновские жидкости имеют переменную вязкость.

Кроме того, при рассмотрении скорости сдвига и напряжения сдвига в ньютоновских жидкостях наблюдается нулевая скорость сдвига при нулевом напряжении сдвига. Это означает, что скорость сдвига в такой жидкости прямо пропорциональна напряжению сдвига. Однако Неньютоновские жидкости имеют переменную связь между скоростью сдвига и напряжением сдвига. Хотя большинство известных нам жидкостей являются Неньютоновскими жидкостями, вода считается Ньютоновской жидкостью при нормальных условиях. Однако почти все соли, расплавленный полимерный материал, кровь, зубная паста, краска, кукурузный крахмал и многие другие разновидности жидкостей являются Неньютоновскими жидкостями.

Основная информация — Ньютоновская и Неньютоновская жидкость

Жидкости могут быть классифицированы на два типа в зависимости от вязкости как Ньютоновские жидкости и Неньютоновские жидкости. Ключевое различие между Ньютоновскими и Неньютоновскими жидкостями заключается в том, что Ньютоновские жидкости имеют постоянную вязкость, тогда как Неньютоновские жидкости имеют переменную вязкость.

Неньютоновская жидкость

    Главная
  • Список секций
  • Физика
  • Неньютоновская жидкость. Что это?

Неньютоновская жидкость. Что это?

Автор работы награжден дипломом победителя III степени

Жидкость окружает нас повсюду. Люди состоят в основном из воды. Мы сталкиваемся с использованием жидкости всегда и везде: пьём, умываемся, купаемся… Как мы представляем себе жидкость? Какими свойствами должна она обладать? Наверное, должна литься, растекаться, принимать форму того сосуда, в который её залили. Казалось, мы знаем о жидкости всё. Но, как оказалось, не всё мы знаем о ней. Ни все жидкости такие, какими мы привыкли их видеть. Однажды я увидел в интернете видеофильм о том, как проводят опыты с необычной жидкостью. Что это? Почему она не похожа на воду, молоко, бензин? Мне это показалось увлекательным и восхитительным! Так как фильм был коротким, из него я узнал совсем мало. Поэтому решил поподробнее узнать, что это за жидкость, и из чего ее изготавливают.

Цель исследования: узнать, что такое неньютоновская жидкость, какими необычными свойствами она обладает, и где ее применяют.

1)изучить литературу по теме исследования;

2)узнать области применения;

2)создать неньютоновскую жидкость;

3)провести эксперименты, демонстрирующие свойства неньютоновской жидкости в домашних условиях;

Объект исследования: неньютоновская жидкость.

Предмет исследования: свойства неньютоновской жидкости.

Гипотеза: предположим, что данная жидкость по своим свойствам отличается от привычного нам понятия жидкости.

1.1 Что такое неньютоновская жидкость?

Жидкость в окружающем нас мире встречается повсеместно. Свойства жидкостей знакомы каждому, и любой человек, взаимодействующий с ними в той или иной степени, может предугадать, как поведет себя какая-либо жидкость в конкретной ситуации. Жидкости, свойства которых мы привыкли наблюдать в ежедневном использовании, подчиняются закону Ньютона, называются ньютоновскими. Ньютоновская жидкость названа в честь Исаака Ньютона, который открыл закон вязкого трения для жидкостей.

Исаак Ньютон (1643-1727) — английский математик, механик, астроном и физик, создатель классической механики. Один из основоположников современной физики, сформулировал основные законы механики и был создателем единой физической программы описания всех физических явлений на базе механики, открыл закон всемирного тяготения, объяснил движение планет вокруг Солнца и Луны вокруг Земли, а также приливы в океанах. Ньютоновская жидкость, вязкая жидкость, подчиняющаяся при своём течении закону вязкого трения Ньютона. Еще в конце XVII века великий физик обратил внимание, что грести веслами быстро гораздо тяжелее нежели, если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее. Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействием, но даже и звуковыми волнами. Чем сильнее воздействие на обычную жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на Неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект – жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее. Вязкость неньютоновских жидкостей возрастает при уменьшении скорости тока жидкости. Обычно такие жидкости сильно неоднородны и состоят из крупных молекул, образующих сложные пространственные структуры. Соответственно, неньютоновская жидкость – это жидкость, на которую не действуют законы Ньютона.( Приложение 1)

Области применения неньютоновских жидкостей.

Неньютоновские жидкости с каждым годом все больше завоевывают наш мир. Ученым нравится этот материал, и они с завидным постоянством радуют нас новыми интересными идеями применения неньютоновских жидкостей.

Рассмотрим несколько вариантов использования и применения неньютоновских жидкости в мире в настоящее время:

«Жидкая сумка» . Для того чтобы защитить авиапассажиров, международная команда ученых разработала специальную сумку-чехол, которая способна подавить взрыв в багажном отсеке самолета. (Приложение 2)

Чтобы косметика держалась на коже, ее делают вязкой, будь это жидкий тональный крем, блеск для губ, подводка для глаз, тушь для ресниц, лосьоны, или лак для ногтей. Вязкость для каждого изделия подбирается индивидуально, в зависимости от того, для какой цели оно предназначено. (Приложение 3)

Самая первая игрушка-лизун или слайм (slime) была сделана компанией Mattel в 1976 году. Игрушка-Лизун заслужила популярность благодаря своим забавным свойствам – одновременно текучести, эластичности и возможности постоянно трансформироваться. Обладающая свойствами неньютоновской жидкости, игрушка-лизун быстро стала безумно популярной у детей и взрослых. Лизуна можно было купить не везде, но забавную игрушку скоро научились делать в домашних условиях. (Приложение 4)

Читайте также:  Добываем золото из радиодеталей своими руками

В автомобильной промышленности:

Неньютоновские жидкости используются в автомобильной промышленности: моторные масла синтетического производства на основе неньютоновской жидкости обладают отчетливо выраженными преимуществами, в частности они создают защитную пленку смазочного материала, которая никогда не стекает с рабочих поверхностей двигателя. Мы развели неньютоновскую жидкость в таз, и нам удалось побегать на неньютоновской жидкости. (Приложение 5)

2.1 Изготовление неньютоновской жидкости.

Мы сами легко можем сделать вариант неньютоновской жидкости, которая называется “ооблек” (“oobleck ) Рецепт ее прост.

Приготовление крахмального раствора

Цель: получить неньютоновскую жидкость.

Для приготовления нам нужны крахмал (картофельный, кукурузный) и вода. В глубокую миску высыпали крахмал и добавили воду. Пропорция зависит от качества крахмала и обычно составляет от 1:1 до 1:3 в пользу воды. В результате смешивания получили нечто типа киселя, обладающего интересными свойствами. (Приложение 6)

Нечто необычное мы заметили, как только стали смешивать крахмал и воду. По виду это был кисель или тесто для блинов. Но размешать её было непросто. Казалось, что не сможем растворить крахмал. Оказывается, он и не растворится. Поэтому у нашей жидкости свойства интересные.

Попробуем изучить свойства жидкости.

2.2. Изучение физических свойств вязкой массы – неньютоновской жидкости.

Проведём несколько опытов и посмотрим, как неньютоновская жидкость будет себя вести при различном воздействии на неё.

Я опустил руку в жидкую массу и резко попробовал сжать пальцы внутри нее. Также можно резко попробовать вытащить руку из нее. Главное все это делать быстро. В ходе проведения опыта можно заметить, что при резком воздействии на неньютоновскую жидкость она моментально крепчает. (Приложение 7)

Вывод: таким образом, резко сжать внутри нее пальцы не получится, и резко вынуть руку тоже, несмотря на то, что при медленном погружении в нее руки мы чувствовали обыкновенную жидкость.

При медленном погружении сжатого кулака в неньютоновскую жидкость, она проявляет свойства обычной жидкости и не оказывает сопротивления. Но если по ней резко ударить, то она мгновенно превратится в более плотное вещество, и, пробить ее не получится. (Приложение 8)

Вывод: при быстром и резком взаимодействии она становится похожей на твердое тело, а при медленном воздействии становится жидкостью.

Мы попробовали скатать из данной жидкости шарик. Надо быстро потереть её в ладонях. Из-за трения образовывался небольшой твёрдый шарик, (Приложение 9) но когда прекращаешь воздействовать на нее, шарик моментально растекается в руках. (Приложение 10)

Вывод: при воздействии на жидкость, она твердеет, при прекращении воздействия – растекается.

Мы попробовали перелить жидкость из одного сосуда в другой.

При переливании неньютоновской жидкости из одного сосуда в другой, мы увидели, что она вновь проявляет как свойства твердого вещества, так и жидкого. При вытекании жидкости из одного сосуда, как и в момент своего падения, она остается жидкой, но при взаимодействии с поверхностью другого сосуда, или любой другой твердой поверхностью она на секунды столкновения становится твердой, и вновь растекается.

Вывод: при падении жидкость проявляет свойства жидких тел, пр соприкосновении с твёрдой поверхностью – твёрдых тел.

Взяли яйцо, положили его в пакет с водой, бросили с высоты данный пакет в ведро. Яйцо при ударе разбилось. Взяли другое яйцо и положили его в пакет с неньютоновской жидкостью. Точно так же бросили с высоты в ведро, но яйцо не разбилось. (Приложение 11)

Вывод: при ударе о ведро жидкость повела себя как твердое тело.

Мы пробовали забить гвоздь в брусок в сосуде с водой. Это нам не удалось, так как вода разбрызгивалась, брусок тонул и снова всплывал. Зато в брусок, который находился в неньютоновской жидкости, мы легко забили гвоздь. Так как жидкость принимала свойства твердого тела.

Вывод: при воздействии на жидкость, она принимает свойства твёрдого тела.

Приготовив большое количество жидкости, я попробовал по ней побегать. Интересно, что пока я перебирал ногами, оставался на поверхности. Как только останавливался, погружался в жидкость.

Вывод: жидкость твёрдая, пока на неё воздействует сила.

Обычная ньютоновская жидкость всегда проявляет свойства жидкости, какие бы силы к ней не прикладывали. Вода – типичный пример – не становится плотной, вязкой.

Неньютоновские же жидкости ведут себя по-другому, то, как она будет себя вести, зависит от характера воздействия на неё.

В ходе исследования мы провели опыты, показывающие занимательные свойства жидкости. Мы показали, что частицы крахмала набухают в воде и формируются контакты в виде хаотически сплетенных молекул. Эти прочные связи называются зацеплениями. При резком воздействии прочные связи не дают молекулам сдвинуться с места, и система реагирует на внешнее воздействие, как упругая пружина. При медленном воздействии зацепления успевают растянуться и распутаться. Сетка рвется и молекулы расходятся.

В своей работе мы показали маленькую часть того, что известно о неньютоновской жидкости.

Мы узнали, насколько распространены такие жидкости. Оказывается, область применения их обширна и мы думаем, что они найдут ещё большее применение.

Выдвинутая гипотеза о свойствах неньютоновской жидкости доказана с помощью проведенных нами опытов. Неньютоновская жидкость принимает свойства жидкого и твёрдого тела, чего не может сделать ньютоновская жидкость.

Неньютоновская жидкость – это пример того, что вокруг нас много удивительных вещей. Изучая данную жидкость и проделывая с ней различные опыты, мы получили массу впечатлений и новых открытий.

3.Энциклопедический словарь юного физика / Сост.В.А.Чуянов. – 2-е изд., испр. и доп.- М.: Педагогика, 1991. – 336с.

4. Детская энциклопедия , т.3, Вещество и энергия, – 3-е изд., М.: Педагогика, 1973. – 544с.

Неньютоновская жидкость

Введение

…материал, который обладает удивительными
свойствами: при малых нагрузках он мягкий
и эластичный, а при больших – становится
твердым и очень упругим.

Ни один человек не может уйти от реального материального мира, окружающего его и в котором он сам живёт. Природа, быт, техника и всё то, что нас окружает и в нас самих происходит, подчинено единым законам происхождения и развития – законам ФИЗИКИ.

Природа – настоящая физическая лаборатория, в которой человек должен быть активным наблюдателем, творцом, но не рабом природы, неспособным хотя бы приближенно объяснить наблюдаемые им природные явления. С самого рождения каждый человек знакомится с веществами, окружающими его, подрастая, человек начинает отличать разного рода жидкости от газов или твёрдых тел, понимая, какие отличительные свойства присущи веществам. В малом возрасте ребёнок не сильно задумывается над этими интересными признаками, не понимает, почему вода – это жидкость, а снег – твёрдое тело… Чем старше становится человек, тем шире становится область его знаний, тем глубже он понимает суть вещей. Так, для каждого человека наступает момент, когда под понятием жидкость он будет понимать не просто молоко или же воду, он поймёт, что жидкость, как и любой другой род материи, имеет свою классификацию, основные свойства. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости делят на идеальные и реальные. Идеальные – невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью. Реальные – вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений.

Актуальность проекта:

Нас окружает огромное количество жидкостей. Жидкость окружает везде и всегда. Сами люди состоят из жидкости, вода дает нам жизнь, из воды мы вышли и к воде всегда возвращаемся. Мы все время сталкиваемся с использованием жидкостей, пьем чай, моем руки, заливаем бензин в автомобиль, наливаем масло на сковороду. Основным свойством жидкости является то, что она способна менять свою форму под действием механического воздействия.
Но оказалось, что не все жидкости ведут себя привычным образом. Это так называемые неньютоновские жидкости. Мы заинтересовалась необычными свойствами таких жидкостей и провели несколько опытов.

Гипотеза:
Провести опыты, в которых наглядно можно увидеть некоторые физические свойства неньютоновских жидкостей.

Цели проекта:
Получить неньютоновскую жидкость
Изучить некоторые физические свойства неньютоновской жидкости

Задачи проекта:
Собрать теоретический материал о неньютоновской жидкости
Опытным путём изучить некоторые физические свойства неньютоновских жидкостей (плотность, температура кипения, температура кристаллизации)
Узнать область применения неньютоновских жидкостей

Методы исследования:
Наблюдение
Изучение теоретических материалов
Проведение опытов
Анализ

Теоретическая часть

Жидкость – это одно из состояний вещества. Таких состояний три, их еще называют агрегатными, это газ, жидкость и твердое вещество. Жидким вещество называют, если оно обладает свойством неограниченно менять форму под внешним воздействием, сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое. Жидкости бывают идеальные и реальные. Идеальные – невязкие жидкости, обладающие абсолютной подвижностью, т.е. отсутствием сил трения и касательных напряжений и абсолютной неизменностью объёма под воздействием внешних сил. Реальные – вязкие жидкости, обладающие сжимаемостью, сопротивлением, растягивающим и сдвигающим усилиям и достаточной подвижностью, т.е. наличием сил трения и касательных напряжений. Реальные жидкости могут быть ньютоновскими и неньютоновскими.

К ньютоновским относятся однородные жидкости. Ньютоновская жидкость – это вода, масло и большая часть привычных нам в ежедневном использовании текучих веществ, то есть таких, которые сохраняют свое агрегатное состояние, что бы вы с ними не делали (если речь не идет об испарении или замораживании, конечно).

Другое дело – это неньютоновские жидкости. Их особенность заключена в том, что их текучие свойства колеблются в зависимости от скорости ее тока.

Еще в конце XVII века великий физик Ньютон обратил внимание, что грести веслами быстро гораздо тяжелее, нежели если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее. Ньютон пришел к изучению течения жидкостей, когда пытался моделировать движение планет Солнечной система посредством вращения цилиндра, изображавшего Солнце, в воде. В своих наблюдениях он установил, что если поддерживать вращение цилиндра, то оно постепенно передаётся всей массе жидкости. Впоследствии для описания подобных свойств жидкостей стали использовать термины «внутреннее трение» и «вязкость», получившие одинаковое распространение. Исторически, эти работы Ньютона положили начало изучению вязкости и реологии.

Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от градиента скорости. Такие жидкости называют неньютоновскими. Неньютоновскими, или аномальными, называют жидкости, течение которых не подчиняется закону Ньютона. Таких, аномальных с точки зрения гидравлики, жидкостей немало. Они широко распространены в нефтяной, химической, перерабатывающей и других отраслях промышленности.

Неньютоновские жидкости не поддаются законам обычных жидкостей, эти жидкости меняют свою плотность и вязкость при воздействии на них физической силой, причем не только механическим воздействие, но даже звуковыми волнами и электромагнитными полями. Если воздействовать механически на обычную жидкость, то, чем большее будет воздействие на нее, тем больше будет сдвиг между плоскостями жидкости, иными словами, чем сильнее воздействовать на жидкость, тем быстрее она будет течь и менять свою форму. Если воздействовать на неньютоновскую жидкость механическими усилиями, мы получим совершенно другой эффект, жидкость начнет принимать свойства твердых тел и вести себя как твердое тело, связь между молекулами жидкости будет усиливаться с увеличением силы воздействия на нее, вследствии мы столкнемся с физическим затруднением сдвинуть слои таких жидкостей. Вязкость неньютоновских жидкостей возрастает при уменьшение скорости тока жидкости.

Читайте также:  Как закалить сталь - наглядный эксперимент

Экспериментальная часть

В практической части мы провели несколько опытов.

Эксперимент №1 «Получение неньютоновской жидкости»

Цель: получить неньютоновскую жидкость и проверить, как она ведёт себя в обычных условиях.

Оборудование: вода, крахмал, чаша.

Ход эксперимента:
1 Взяли чашу с водой и крахмал. Смешали в равных долях вещества.
2 Получилась белая жидкость.

Заметили, если мешать быстро, чувствуется сопротивление, а если медленнее, то нет. Получившуюся жидкость можно налить в руку и попробовать скатать шарик. При воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связано это будет с тем, что после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы.

Эксперимент №2 «Изучение некоторых физических свойств неньютоновских жидкостей»

Для изучения свойств мы взяли смесь крахмала с водой, полученную в предыдущем эксперименте, гель для душа и подсолнечное масло.

Цель этого эксперимента: опытным путём определить плотность, температуру кипения и температуру кристаллизации данных жидкостей.

В результате проведённых опытов, мы получили следующие данные:

Эксперимент №3 «Изучение влияния магнитных полей на неньютоновскую жидкость»

Эксперименты с ферромагнитной жидкостью широко распространены в виде видеороликов в интернете. Дело в том, что данный вид жидкости под действием магнита совершает определенные движения, что делает эксперименты очень зрелищными.

Ферромагнитную жидкость можно изготовить своими руками в домашних условиях. Для этого возьмём масло (подойдет моторное, подсолнечное и прочие), а также тонер для лазерного принтера (субстанция в виде порошка). Теперь смешаем оба ингредиента до консистенции сметаны.

Для того, чтобы эффект был максимальным, погреем получившуюся смесь на водяной бане в течение приблизительно получаса, не забывая при этом ее помешивать.
Ферромагнитная жидкость (феррофлюид) – это жидкость, которая сильно поляризуется под воздействием магнитного поля. Проще говоря, если приблизить обычный магнит к этой жидкости, она производит определенные движения, например, становится похожей на ежика, встает горбом и т.д.

Изготовление игрушки – лизуна

Самая первая игрушка-лизун или слайм (slime) была сделана компанией Mattel в 1976 году. Игрушка-Лизун заслужила популярность благодаря своим забавным свойствам – одновременно текучести, эластичности и возможности постоянно трансформироваться. Обладающий свойствами неньютоновской жидкости, игрушка-лизун быстро стала безумно популярной у детей и взрослых. Лизуна можно было купить не везде, но забавную игрушку скоро научились делать в домашних условиях.

Изготовление лизуна своими руками и в домашних условиях отличается от оригинального рецепта. Поэтому будем использовать более доступные вещества:

1. Клей ПВА. Белый, желательно свежий клей можно купить в любом канцелярском или строительном магазине. Клея для Лизуна нам понадобится примерно половина обычного стакана, около 100 гр.
2. Вода – самая обычная вода из-под крана. При желании можно взять кипяченую, комнатной температуры. Понадобится немного больше стакана.
3. Тетраборат натрия, боракс или бура. Может быть приобретен в аптеке, в форме 4%-ного раствора.
4. Пищевой краситель или несколько капель зеленки. Оригинальный лизун – зеленый, и зеленка отлично подходит на роль подкрашивающего вещества.
5. Мерный стакан, посуда и палочка для смешивания. В качестве палочки можно взять карандаш, ложку или любой другой подходящий предмет.

Переходим к самому процессу создания лизуна:

– Растворяем столовую ложку боракса в стакане воды.
– Четверть стакана воды и четверть стакана клея превращаем в однородную смесь в другой посуде. При желании туда же добавляем краситель.
– Перемешивая клеевую смесь, постепенно добавляем туда раствор буры, примерно полстакана. Мешаем до получения желеобразной однородной массы.
– Проверяем результат: загустевшая субстанция, собственно, и является игрушкой лизуном. Ее можно выложить на стол, помять и проверить все ее оригинальные свойства.

Применение неньютоновских жидкостей

В мире, как ни странно, очень популярны данные жидкости. При исследовании неньютоновских жидкостей в первую очередь изучают их вязкость. Знания о вязкости и о том, как ее измерять и поддерживать, помогают и в медицине, и в технике, и в кулинарии, и в производстве косметики.

Применение в косметологии

Косметические компании зарабатывают огромную прибыль на том, что смогли найти идеальный баланс вязкости, который нравится покупателям.

Чтобы косметика держалась на коже, ее делают вязкой, будь это жидкий тональный крем, блеск для губ, подводка для глаз, тушь для ресниц, лосьоны, или лак для ногтей. Вязкость для каждого изделия подбирается индивидуально, в зависимости от того, для какой цели оно предназначено. Блеск для губ, например, должен быть достаточно вязким, чтобы долго оставаться на губах, но не слишком вязким, иначе тем, кто им пользуется, будет неприятно ощущать на губах что-то липкое. В массовом производстве косметики используют специальные вещества, называемые модификаторами вязкости. В домашней косметике для тех же целей используют разные масла и воск.

В гелях для душа вязкость регулируют для того, чтобы они оставались на теле достаточно долго, чтобы смыть грязь, но не дольше, чем нужно, иначе человек почувствует себя снова грязным. Обычно вязкость готового косметического средства изменяют искусственно, добавляя модификаторы вязкости.

Наибольшая вязкость — у мазей. Вязкость кремов — ниже, а лосьоны — наименее вязкие. Благодаря этому лосьоны ложатся на кожу более тонким слоем, чем мази и кремы, и действуют на кожу освежающе. По сравнению с более вязкой косметикой, их приятно использовать даже летом, хотя втирать их нужно сильнее и чаще приходится наносить повторно, так как они долго не задерживаются на коже. Кремы и мази дольше остаются на коже, чем лосьоны, и сильнее ее увлажняют. Их особенно хорошо использовать зимой, когда в воздухе меньше влаги. В холодную погоду, когда кожа сохнет и трескается, очень помогают такие средства как, например, масло для тела — это что-то среднее между мазью и кремом. Мази намного дольше впитываются и после них кожа остается жирной, но они намного дольше остаются на теле. Поэтому их часто используют в медицине.

От того, понравилась ли вязкость косметического средства покупателю, часто зависит, выберет ли он это средство в будущем. Именно поэтому производители косметики тратят много усилий на то, чтобы получить оптимальную вязкость, которая должна понравиться большинству покупателей. Один и тот же производитель часто выпускает продукт для одних и тех же целей, например гель для душа, в разных вариантах и с разной вязкостью, чтобы у покупателей был выбор. Во время производства строго следуют рецепту, чтобы вязкость соответствовала стандартам.

Применение в кулинарии
Чтобы улучшить оформление блюд, сделать еду более аппетитной и чтобы ее было легче есть, в кулинарии используют вязкие продукты питания.

Продукты с большой вязкостью, например, соусы, очень удобно использовать, чтобы намазывать на другие продукты, как хлеб. Их также используют для того, чтобы удерживать слои продуктов на месте. В бутерброде для этих целей используют масло, маргарин, или майонез — тогда сыр, мясо, рыба или овощи не соскальзывают с хлеба. В салатах, особенно многослойных, также часто используют майонез и другие вязкие соусы, чтобы эти салаты держали форму. Самые известные примеры таких салатов — селедка под шубой и оливье. Если вместо майонеза или другого вязкого соуса использовать оливковое масло, то овощи и другие продукты не будут держать форму.

Вязкие продукты с их способностью удерживать форму используют также для украшения блюд. Например, йогурт или майонез на фотографии не только остаются в той форме, которую им придали, но и поддерживают украшения, которые на них положили.

Применение в медицине

В медицине необходимо уметь определять и контролировать вязкость крови, так как высокая вязкость способствует ряду проблем со здоровьем. По сравнению с кровью нормальной вязкости, густая и вязкая кровь плохо движется по кровеносным сосудам, что ограничивает поступление питательных веществ и кислорода в органы и ткани, и даже в мозг. Если ткани получают недостаточно кислорода, то они отмирают, так что кровь с высокой вязкостью может повредить как ткани, так и внутренние органы. Повреждаются не только части тела, которым нужно больше всего кислорода, но и те, до которых крови дольше всего добираться, то есть, конечности, особенно пальцы рук и ног. При обморожении, например, кровь становится более вязкой, несет недостаточно кислорода в руки и ноги, особенно в ткань пальцев, и в тяжелых случаях происходит отмирание ткани. В такой ситуации пальцы, а иногда и части конечностей приходится ампутировать.

Применение в технике

Неньютоновские жидкости используются в автопроме, моторные масла синтетического производства на основе неньютоновских жидкостей уменьшают свою вязкость в несколько десятков раз, при повышении оборотов двигателя, позволяя при этом уменьшить трение в двигатели.

Заключение и выводы

В результате проделанной работы был проведён обзор теоретических источников информации. Проведена серия экспериментов с неньютоновской жидкостью, рассчитали плотность, определили температуру кипения и кристаллизации неньютоновских жидкостей.

По результатам экспериментов можно сделать следующие выводы:
1. Если мешаем быстро неньютоновскую жидкость, чувствуется сопротивление, а если медленнее, то нет. При быстром движении такая жидкость ведёт себя как твердое тело.
2. При изменении температуры изменяется плотность жидкости.

Существует много удивительных вещей вокруг нас, и неньютоновская жидкость яркий этому пример. Мы надеемся, что нам удалось наглядно продемонстрировать ее удивительные свойства.
По итогам работы были выполнены все поставленные задачи и сделаны все запланированные опыты. Проведенные опыты и презентация проиллюстрировали цель проделанной нами работы.

Литература

Методические материалы:

1. А. В.Перышкин. Физика 7 класс, Дрофа, Москва 2008 г.
2. Зарембо Л.К., Болотовский Б.М., Стаханов И.П. и др. Школьникам о современной физике. Просвещение,2006г.
3. Кабардин О.Ф., Физика, справочные материалы, Просвещение, 1988

Интернет-ресурсы:

Работу выполнили:
Скибин Илья, ученик 9 класса
Харитонов Вадим, ученик 9 класса

Руководитель:
Гиевская Людмила Ивановна
учитель физики

Муниципальное казённое общеобразовательное учреждение
Новокалитвенская средняя общеобразовательная школа
Россошанского муниципального района
Воронежской области

Неньютоновская жидкость

Ни один человек не может уйти от реального материального мира, окружающего его и в котором он сам живёт. Природа, быт, техника и всё то, что нас окружает и в нас самих происходит, подчинено единым законам происхождения и развития – законам ФИЗИКИ

Цель: приготовить неньютоновскую жидкость и изучить её свойства

  • Узнать различия обычной и неньютоновской жидкости.
  • Приготовить неньютоновскую жидкость.
  • Провести эксперименты для изучения её свойств.
  • Узнать её применение.
  • Сделать выводы.
  • Представить результаты.

Гипотеза: в домашних условиях можно приготовить неньютоновскую жидкость и изучить ее свойства.

Нас окружает огромное количество жидкостей. Люди состоят из жидкости. Мы пьем жидкости. Готовим жидкости. Моемся жидкостью. Следим за техникой с помощью жидкостей. Основным свойством привычной нам жидкости является то, что она способна менять свою форму под действием механического воздействия. Но оказывается, что не все жидкости ведут себя привычным образом, такие жидкости называют неньютоновские жидкости.

Впервые с данным понятием я столкнулся тогда, когда решил выяснить в

интернет источниках, что собой представляет популярная детская игрушка «жвачка для рук» или хендгам. Я нашел несколько видеороликов, в которых демонстрировались свойства неньютоновских жидкостей на примере изготовленных в домашних условиях хендгамов. Эксперименты произвели на меня большое впечатление и мне захотелось побольше узнать об удивительных свойствах жидкостей, противоречащих законам физики

Для получения информации о разных жидкостях я использовал сеть Интернет.

Читайте также:  Большие мыльные пузыри

По итогам работы были выполнены все поставленные задачи и сделаны все запланированные опыты. Проведенные опыты и презентация проиллюстрировали цель проделанной нами работы.

В природе существуют четыре формы вещества: твердое, жидкое, газообразное и плазма. Жидкость – это среднее состояние между твердым и газообразным. Жидкость, в отличии от твердого вещества, не имеет свою определенную форму, а принимает форму сосуда, в котором она находится. В отличие от газа, имеет определенный объем, из-за того, что в жидкости молекулы связаны не так прочно, поэтому связи постоянно меняются. Но есть жидкости с особыми свойствами, их называют неньютоновскими. В чем же различия (см. табл. 1)?

Основное свойство: текучесть

Текучесть зависит от силы и скорости воздействия, т.е. текучесть при определенных условиях может отсутствовать

Вязкость зависит от природы

Вязкость зависит от скорости воздействия

При применении механических усилий – остаются в жидком состоянии

При применении резких быстрых механических усилий – принимает свойства твердых тел

При медленном воздействии ведет себя как обыкновенная жидкость

К ньютоновским (просто жидкость) относятся однородные жидкости. Ньютоновская жидкость – это вода, масло, спирт, бензин, нефтепродукты и большая часть привычных нам в ежедневном использовании текучих веществ, то есть таких, которые сохраняют свою текучесть, что бы вы с ними не делали (если речь не идет об испарении или замораживании, конечно).

Когда жидкость неоднородна, например, состоит из крупных молекул, образующих сложные пространственные структуры, то при её течении вязкость зависит от скорости. Такие жидкости называют неньютоновскими. Например, кровь человека – неньютоновская жидкость, так как она представляет собой суспензию форменных элементов (эритроциты, лейкоциты и др.) в плазме. Это значит, что из-за различных градиентов скорости, реализующихся в движущейся крови, ее вязкость в различных участках сосудистой системы может изменяться. У неньютоновской жидкости такие свойства потому что связи между молекулами закрученные как пружины. При быстром и сильном воздействии они очень упругие, но при медленном и слабом воздействии связи распутываются.

Я заинтересовался необычными свойствами таких жидкостей и провел несколько экспериментов.

Инструменты и вещества, которые я использовал в опытах:

– картофельный крахмал, вода, пищевые красители, яйцо;

– мерная ёмкость, ёмкость для замеса, плоская ёмкость, вилка, деревянная палочка, салфетки, пищевая пленка, пакетик, резинки;

– блокнот для записей, ручка, видеокамера, фотоаппарат.

Опыт № 1 «Получение неньютоновской жидкости»

Я смешал 3 части крахмала и 2 части воды и получил неньютоновскую жидкость.

Опыт № 2 «Изучение свойств неньютоновской жидкости. Скорость и сила воздействия»

Я перелил неньютоновскую жидкость в плоскую ёмкость. Резко ударил по ней, но рука осталась сухой. Потом я медленно опустил пальцы, и неньютоновская жидкость вела себя как обычная жидкость – медленно стекала.

1.

2.

3.

4.

5.

6.

Я опустил пальцы в неё и резко дёрнул, и ёмкость приподнялась! Когда быстро сжимал текучую неньютоновскую жидкость – она превращалась в плотный шарик, как только переставал сжимать шарик полностью растекался.

Опыт № 3 «Опыт с яйцом»

Как вы думаете, что будет, если сбросить яйцо с небольшой высоты? Я решил проверить. Налил в пакетик неньютоновскую жидкость и положил туда яйцо. Сбросил пакет с высоты потолка на стол. Яйцо не разбилось! Потому что неньютоновская жидкость при быстрых и сильных воздействиях ведёт себя как твёрдое вещество, и яйцо оказалось в надежной “броне”. Проделал тот же опыт с водой. В результате яйцо разбилось, пакет порвался, и вода разлилась.

1.

2.

3.

4.

Опыт № 4 «Прыгающие капельки»

В физике есть такое понятие: звуковая волна – это передающиеся в пространстве механические колебания молекул вещества (например, воздуха) от источника. Нашим источником стал сабвуфер, на который мы передавали с ноутбука звук разной частоты (от 20 Гц до 99 Гц). Как же повела себя неньютоновская жидкость? Для наглядности мы подкрасили нашу неньютоновскую жидкость пищевыми красителями. При звуке 20 Гц – 40 Гц наша жидкость имела свойства обычной жидкости – просто растекалась по поверхности; с 45 Гц до 80 Гц от общей “лужи” стали отделяться маленькие капельки; с 80 Гц до 99 Гц эти капельки стали подпрыгивать и перемешиваться, они потеряли свойства обыкновенной жидкости. Такое свойство неньютоновской жидкости используется при производстве жидкостей для механизмов и машин.

1.

2.

3.

4.

5.

6.

7.

8.

Неньютоновские жидкости нашли свое применение в разных областях нашей жизни. В мире как ни странно очень популярны данные жидкости. При исследовании неньютоновских жидкостей в первую очередь изучают их вязкость, знания о вязкости.

В строительстве: малярная краска является неньютоновской жидкостью поэтому не стекает со стен и не капает с потолка.

Военное применение: неньютоновская жидкость в состоянии обеспечить защиту от пробивной силы высокоскоростных средств поражения, хорошо рассеивая ударную волну по большой площади, поэтому такие жидкости используют в изготовлении брони и бронежилетов.

В технике: смазочные материалы для двигателей и механизмов. Неньютоновские жидкости создают защитную пленку смазочного материала, которая никогда не стекает с рабочих поверхностей двигателя.

В косметике: для изготовления тонального крема, блеска для губ, лака для ногтей. Чтобы косметика держалась на коже, ее делают вязкой, будь это жидкий тональный крем, блеск для губ, подводка для глаз, тушь для ресниц, лосьоны, или лак для ногтей.

В кулинарии: использование сливочного масла, маргарина, майонеза. Чтобы улучшить оформление блюд, сделать еду более аппетитной и чтобы ее было легче есть, в кулинарии используют вязкие продукты питания.

В сфере развлечений: огромные бассейны с неньютоновской жидкостью для исследования ее свойств, игрушки лизуны, умный пластилин.

  • Наша гипотеза подтвердилась. В домашних условиях можно сделать неньютоновскую жидкость и изучить ее свойства.
  • При сильном и быстром воздействии неньютоновская жидкость ведёт себя как твёрдое вещество, а при медленном и слабом воздействии ведёт себя как жидкость.
  • Взаимодействие с неньютоновской жидкостью способствует развитию мелкой моторики пальцев рук, развитию речи и почерка, снимает агрессию и раздражение, развивает творческое мышление и является антистрессом. Подтверждения теоретическим исследованиям я получил на собственной практике. Изготовив рабочий образец неньютоновской жидкости, я начал с ним экспериментировать и взаимодействовать. Через некоторое время я заметил, что игра с жидкостью хорошо влияет на мое состояние. Если я был раздражен или чувствовал усталость, то достаточно было несколько минут поиграть с жидкостью и все приходило в норму, самочувствие становилось лучше.

Учеными объяснено странное поведение неньютоновских жидкостей

Зыбучий песок, также как и разные виды так называемых неньютоновских жидкостей, обладает свойствами, характерными как для твердых объектов, так и для обыкновенных жидкостей. Неньютоновские жидкости состоят из мелких частиц, распределенных в жидкости, причем внешне могут напоминать твердые субстанции или гель. В Английском языке, впрочем, такие жидкости принято обозначать как “flu >

Зыбучие пески – известный с давних пор пример неньютоновских жидкостей

Зыбучие пески опасны тем, что они могут засасывать в себя все, что в них попадает. Стань на такой песок – и начнешь тонуть в нем, но если же быстро ударить по зыбучему песку, то он сразу же затвердеет. Ранее такое его поведение объясняли наличием герметизирующей стенки, не дающей жидкости растекаться, или эффектом увеличения частиц под давлением. Однако, последние экспериментальные исследования, похоже, опровергают эти предположения, и, возможно, приведут к появлению новых объяснений свойств неньютоновских жидкостей.

Примечание . Обычная ньютоновская жидкая субстанция (названная в честь Исаака Ньютона) всегда проявляет свойства жидкости, какие бы внешние силы к ней не прикладывали. Вода является типичным примером: она не уплотняется и не становится более вязкой, а если погрузить в нее палку, на противоположной поверхности не образуется дыра. Неньютоновские жидкости ведут себя совершенно по-другому, а их реакция зависит от характера внешнего воздействия. Их вязкость – снижение текучести – может резко меняться в разных условиях, к тому же, имеет значение и тип взвеси, в чем мог убедиться каждый, кто пробовал приготовить пудинг с нуля.

Скотт Вайтукайтис (Scott R. Waitukaitis) и Генрих Йегер (Heinrich M. Jaeger) из Университета в Чикаго создали из воды и кукурузной муки субстанцию, подобную зыбучему песку, назвав ее «ооблек» (“oobleck”). В ходе экспериментов они ударяли по образцам субстанции алюминиевым стрежнем и измеряли положение, скорость и ускорение стрежня при его взаимодействии с «ооблеком». На основании измерений было установлено, что затвердевание субстанции происходит от внутреннего сжатия и давления, распространяющегося по «ооблеку» от точки удара. Используя в своем исследовании огромное количество субстанции (25 литров), ученые показали, что необычные эффекты, проявляющиеся себя в неньютоновских жидкостях, не зависят от размера контейнера, а следовательно, и само наличие удерживающих стен не является важным фактором.

При помощи рентгеновской съемки, исследователи зарегистрировали образование твердых цилиндрических образований под местами ударов. Тщательно проанализировав эти данные, авторы предложили простую модель, описывающую столкновения, которая оказалась очень схожа с моделями, рассматривающими падение объектов в обычные жидкости, но в то же время демонстрирует совершенно другие объекты.

Для проведения эксперимента ученые устанавливали алюминиевый стержень на специальные направляющие рельсы, чтобы быть уверенными в его движении строго вдоль одной оси. В некоторых случаях они либо роняли стержень (что можно назвать свободным падением), либо использовали начальное ускорение для увеличения скорости стержня, на котором был закреплен акселерометр. Весь процесс записывался на видео камерой, предназначающейся для высокоскоростной съемки, что позволяло исследователям точно измерять положение в любой момент времени, скорость и ускорение.

Частицы кукурузной муки в «ооблеке» имеют неправильную форму и варьируются в размере от 5 до 20 микрон, что типично для зыбучего песка или других неньютоновских жидкостей. Кроме того, суспензия содержала особые, хорошо различимые на рентгеновских снимках микрогранулы, благодаря присутствию которых и отслеживались все перемещения групп частиц субстанции. Авторы поместили сенсор, определяющий силу удара, прямо под стержнем на дне контейнера, чтобы выяснить, как ударная волна распространяется внутри взвеси. Также они использовали лазер для изучения изменений формы поверхности при ударе.

На снимке видна реакция смеси на удар, показывающая “твердотельную” природу неньютоновской жидкости

Чтобы измерить влияние размера контейнера на поведение субстанции, исследователи проводили эксперименты в контейнерах глубиной от 8.5 до 20.5 сантиметров. Однако, было установлено, что стержень всегда быстро замедлял свое движение в определенный момент после соударения со взвесью вне зависимости от глубины.

Рентгеновская съемка также показала, что частицы взвеси, находившиеся непосредственно под местом удара, не перемещались заметно в стороны от столкновения. Наоборот, они формировали нечто, похожее на цилиндр, действующий как второй стержень внутри суспензии. Это образование было окружено конусообразной областью, в которой взвесь продвигалась вверх и в стороны в ответ на удар, слегка приподнимая поверхность вокруг места столкновения. А по прошествии некоторого времени цилиндр «таял», возвращая субстанцию в ее первоначальное квази-жидкое состояние.

Изучив полученные данные, исследователи создали модель суспензии, учитывающую размеры твердого цилиндрического образования и конусообразной области вокруг него. Выявленные сходства с моделями поведения стандартных жидкостей и перемещения масс вещества внутри них указывают на гибридную природу суспензий. Это также противоречит обычному подходу к физике неньютоновских жидкостей, согласно которому важную роль играют стены контейнера, а частицы, вместо того чтобы сформировать цилиндрический объект, должны просто «разбегаться» в стороны.

Общая картина процесса теперь становится понятнее: энергия удара, перемещаясь по прямой вниз и сталкиваясь с дном, возвращается вверх и образует второй «стержень». А что касается размеров и формы частиц взвеси, авторы исследования заявляют, что их модель применима к другим суспензиям и в тех случаях, если параметры гранул в субстанции будут совпадать.

Ссылка на основную публикацию