Ферромагнитная жидкость

Получение и применение ферромагнитной жидкости

Веклич А.В,
Ерушевич Д.А,
Борисов Р.А,
Рачек В.Б.

Институт инженерной физики и радиоэлектроники СФУ
660074, Красноярск, ул. Киренского 26.
E-mail: veklich95@mail.ru

В данной статье рассматриваются способ получения ферромагнитной жидкости, спектр ее применения на производстве.

Ключевые слова: Ферромагнитная жидкость, феррофаза.

This article discusses a method for producing a ferromagnetic fluid, the spectrum of its application in the workplace.

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер 10 нм или меньше) магнетита, гематита или другого материала, содержащего железо, взвешенных в несущей жидкости. Они достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле. Аналогичным образом ионы в водных растворах парамагнитных солей (например, водный раствор сульфата меди(II) или хлорида марганца(II)) придают раствору парамагнитные свойства.

Ферромагнитные жидкости это коллоидные растворы — вещества, обладающие свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится. Эта способность изменять состояние под воздействием магнитного поля позволяет использовать ферромагнитные жидкости в качестве уплотнителей, смазки, а также может открыть другие применения в будущих наноэлектромеханических системах.

Для обеспечения устойчивости ФЖ частицы связываются с поверхностно-активным веществом (ПАВ), образующим защитную оболочку вокруг частиц и препятствующем их слипанию из-за Ван-дер-Ваальсовых или магнитных сил. Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свойств, поскольку не сохраняют остаточной намагниченности после исчезновения внешнего магнитного поля. На самом деле ферромагнитные жидкости являются парамагнетиками и их часто называют «супермагнетиками» из-за высокой магнитной восприимчивости. Ферриты-химические соединения оксида железа Fe2O3 c оксидами других металлов.

Рассмотрим принцип получения ферромагнитной жидкости.

Выделим основные задачи:

1) получить высокодисперсные частицы феррофазы;

2) стабилизировать их в жидкости-носителе.

Оценки показывают, что для обеспечение устойчивости МЖ, необходимо обеспечить получение частиц ферромагнетика размером 500- 2000 нм. Достичь таких размеров можно или измельчая крупные частицы мaгнетика, или же выращивая их из молекулярных размеров до коллоидных. Второй очень важной технолoгической особенностью получения магнитных жидкостей, высоко дисперсных магнитных материалов является защита коллоидных частиц от окисления и предотвращения агломерации и коагуляции как в процессе получения, так и при переводе частиц в коллоидное состояние в жидкости-носителе. Наиболее успешно эта задача решается путем получения высокодисперсных частиц непосредственно в жидкости-носителе и стабилизации их ПАВ в момент или сразу после их образования. Условием эффективной стабилизации частиц является совместимость феррофазы, стабилизатора и дисперсионной среды, при этом наилучшими стабилизаторами оказываются такие вещества, которые хорошо адсорбируются на поверхности частиц феррофазы, а свободной частью своей молекулы хорошо растворяются в жидкости-носителе. Этим условиям обычно хорошо отвечают вещества с длинной углеводородной цепочкой (C10-C20) содержащие функциональные группы (-OH, -NH2, -COOH, SO3H и т.д.). Способы получения коллоидных систем МЖ можно разделить на методы диспергирования и методы конденсации.

Для получения МЖ в химической лаборатории использовался метод конденсации высокодисперсного магнетита, в основе которого лежит реакция солей железа (II) и (III) в щелочной среде: FeSO4*7H2O + 2FeCl3*6H2O + 8NH3*H2O → Fe3O4 + 6NH4Cl + (NH)2SO4 + 20H2O

Реактивы: FeSO4*7H2O; FeCl3*6H2O; 25%-ный раствор аммиака, дистиллированная вода, мыло.

Предложенные для проведения эксперимента массы веществ были уменьшены в четыре раза.

1. В дистиллированной воде растворить FeSO4*7H2O и FeCl3*6H2O ( при слабом подогреве и несильном помешивании).

2. Полученный раствор отфильтровать в другую колбу для отделения от механических примесей.

3. Залить в чистую колбу 25%-ный раствор аммиака.

4. Тонкой струей влить отфильтрованный раствор в колбу с «аммиачной водой» при интенсивном помешивании. Коричнево-оранжевый раствор мгновенно превращается в суспензию черного цвета.

5. Долить к получившемуся раствору немного воды и поставить колбу с образовавшейся смесью на магнит на 30 мин.

6. После выпадения частиц магнетита на дно колбы (под действием сил магнитного поля), крайне осторожно слить около 2/3 раствора, придерживая осадок магнитом. Снова залить дистиллированную воду в колбу, в таком же количестве, и хорошо перемешивая раствор. Поставить колбу на магнит. Повторять эти действия до тех пор, пока pH сливного раствора не станет нейтрален.

7. Получившуюся суспензию отфильтровать и собрать осадок.

8. Осадок смешать с заранее полученным ПАВ.

9. Нагревать полученную смесь в течение часа (t=80˚C), хорошо перемешивая.

10. Охладить полученную смесь до комнатной температуры. Добавить дистиллированной воды и тщательно размешать.

Разведенную в воде смесь поставить на магнит на несколько часов, после чего ферромагнитная жидкость готова.

Магнитные жидкости (MЖ) — это уникальный технологический искусственно синтезированный материал, обладающий жидкотекyчими магнитoуправляемыми свойствами с широкими перспективам применения в технике, медицине, экологии. MЖ обладает всеми преимуществами жидкого материала — малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость МЖ позволяет удерживать ее в нужном месте устройства под действием магнитного поля. Сейчас для магнитных жидкостей придумали множество полезных применений: для уплотнения валов и поршней, для «вечной» смазки, для сбора нефти, разлитой на воде, для обогащения полезных ископаемых, для лечения и диагностики многих болезней и даже для прямого превращения тепловой энергии в механическую. Рассмотрено некоторые наиболее интересные и перспективные области применения магнитной жидкости.

Сформируем вывод о проделанной работе.

Магнитные жидкости, обладают, огромным потенциалом и несут в себе, если не технологическую революцию, то множество важных фундаментальных открытий и перспективных технологических применений.

Список литературы

  1. Арефьев И.М. «Применение магнитных жидкостей. Магнитная смазка». Москва: Наука, 2000г.
  2. Берлин М.А., Грабовский Ю.П., Соколенко В.Ф., Пиндюрина Н.Г. Некоторые вопросы технологии получения ферромагнитных жидкостей, Иваново, 1981г.
  3. Контарев А.В., Стадник С.В., Лешунков В.А. «Применение магнитных жидкостей. Успехи современной науки», 2006г.
  4. Северцев Л.Г. Статья «Магнитные жидкости — яд для рака!» Журнал «Молекулярная медицина» № 3, 2003г.
  5. Сенатская И.И., Байбуртский Ф.С. «Жидкость, которая твердеет в магнитном поле» Химия и жизнь, 2002г.

Как сделать ферромагнитную жидкость дома?

Прошло 52 года с тех пор, как сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение — добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

В качестве магнитного вещества Папелл использовал магнетит (Fe3O4), который по специальной технологии размельчал (перетирал в смеси с олеиновой кислотой) в течение многих дней. Получалась устойчивая коллоидная суспензия, в которой стабильно существовали крошечные частички магнетита размером 0,1—0,2 микрона. Олеиновая кислота в этой системе играла роль модификатора поверхности, который не давал частицам магнетита слипаться. Патент С.Папелла US 3215572 A (Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles) открыт, и его можно посмотреть в Интернете. Классический состав ферромагнитной жидкости — 5% (по объему) магнитных частиц, 10% модификатора поверхности (олеиновая, лимонная или полиакриловая кислоты и др.). Остальное — органический растворитель, включая жидкие масла.

Интерес к магнитным жидкостям оживился в последние годы, и сегодня они нашли уже множество применений. Если нанести такую жидкость на неодимовый магнит, то магнит будет скользить по поверхности с минимальным сопротивлением, то есть трение резко уменьшится. На основе ферромагнитной жидкости в США делают радиопоглощающие покрытия на самолеты. А создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой. И это лишь несколько примеров.

Магнитная жидкость — удивительный материал. Стоит поместить ее в магнитное поле, как разрозненные магнитные частицы объединяются и выстраиваются вдоль силовых линий поля, превращаясь во вполне твердое вещество. Сегодня фокусы с магнитной жидкостью, которая при соприкосновении с магнитом превращается в безупречных с точки зрения симметрии ежиков или кактусы, показывают на многих развлекательных шоу. Конечно, ферромагнитную жидкость можно купить, но ведь гораздо интереснее сделать самому.

Мы писали о том, как получить самозатвердевающую магнитную жидкость, которая позволит рассмотреть структуры, образованные магнитными частицами, под микроскопом («Химия и жизнь», 2015, №11).А вот еще один рецепт самодельной ферромагнитной жидкости. Возьмите 50 мл тонера для лазерного принтера. Этот порошок не менее чем на 40% состоит из магнетита, размер частиц которого — 10 нанометров и меньше. В тонере также обязательно присутствует модификатор поверхности, чтобы наночастицы не слипались. К 50 мл тонера добавьте 30 мл растительного масла (две столовые ложки) и тщательно перемешайте, не жалея на этот процесс времени. Получится черная однородная жидкость, похожая на сметану. А теперь налейте ее в плоскую стеклянную емкость с бортиками, чтобы толщина слоя была не меньше сантиметра. Поднесите магнит под донышко емкости, и в этом месте в жидкости сразу же возникнет жесткий ежик. С помощью магнита его можно перемещать. Если же вы поднесете магнит к поверхности жидкости или сбоку, то жидкость буквально выскочит навстречу магниту, так что будьте осторожны. Чтобы избежать этой неприятности, можно поместить магнитную жидкость в небольшую стеклянную коническую колбу, заполнив ее наполовину или чуть меньше. Наклоните колбу, чтобы образовался слой жидкости вдоль ее стенки, и поднесите магнит к стеклу.

Читайте также:  Как разрезать бутылку вдоль

Успех зависит от силы магнита (неодимовый магнит небольшого размера можно купить в магазинах) и качества тонера. В последнем случае надо быть уверенным, что он содержит магнитный порошок.

Ферромагнитная жидкость

ВВЕДЕНИЕ

Цель:приготовить ферромагнитную жидкость и изучить её свойства.

Задачи:

Узнать о ферромагнитной жидкости (вид неньютоновской жидкости).

Приготовить ферромагнитную жидкость.

Провести эксперименты для изучения её свойств.

Узнать её применение.

Гипотеза: в домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.

Область применения результатов: участие в научно-исследовательских конкурсах

Актуальность: Магнетизм – это физическое явление, при котором материалы оказывают притягивающую или отталкивающую силу на другие материалы на расстоянии. Планета Земля имеет два магнитных полюса и собственное магнитное поле. Магниты – важная часть нашей повседневной жизни. Магниты являются существенными компонентами таких устройств, как электрические двигатели, динамики, компьютеры, проигрыватели компакт-дисков, микроволновые печи и, конечно, автомобили. Магниты используются в датчиках, приборах, производственном оборудовании, научных исследованиях. Ферромагнитная жидкость – один из видов неньютоновской жидкости. Это искусственно созданная жидкость. Эта жидкость меняет свойства при определенных условиях которыми может управлять человек.

ОСНОВНАЯ ЧАСТЬ

2.1 Теоретическая часть

Магнитные жидкости – это уникальный технологический искусственно синтезированный материал, обладающий жидкотекучими и магнитоуправляемыми свойствами.

В 1963 году сотрудник NASA Стив Папелл изобрел ферромагнитную жидкость. Он решал вполне определенную задачу: как в условиях невесомости заставить жидкость в топливном баке ракеты подходить к отверстию, из которого насос перекачивал топливо в камеру сгорания. Тогда-то Папелл и придумал нетривиальное решение — добавлять в топливо какую-нибудь магнитную субстанцию, чтобы с помощью внешнего магнита управлять перемещением топлива в баке. Так на свет появилась ферромагнитная жидкость.

Минимальный состав ферромагнитой жидкости: ферромагнетик (например, мелкие частицы магнитного металла) и растворитель (например, различные масла). Но такая жидкость будет оседать. Чтобы этого не происходило, необходимо добавить модификатор поверхности (вещество, которое не даёт ферромагнетику слипаться, например лимонная кислота). Ферромагнитные жидкости изучает раздел науки коллоидная химия.

Магнитная жидкость обладает всеми преимуществами жидкого материала – малым коэффициентом трения в контакте с твердым телом, возможностью проникать в микрообъемы, способностью смачивать практически любые поверхности и др. В то же время, магнитоуправляемость магнитной жидкости позволяет удерживать её в нужном месте устройства под действием магнитного поля.

2.2 Практическая часть:

В практической части работы я пробовал сделать ферромагнитную жидкость и посмотреть как она изменяется в присутствии магнита.

2.2.1 Материалы и инструменты:

– тонер-порошок, девелопер, железная стружка, магнитный порошок;

– машинное масло, подсолнечное масло;

– неодимовые магниты: из обычного жесткого диска для компьютера, из звукового динамика, приобретенный в специализированном магазине неодимовое магнит-кольцо;

– флакон, воронка, разные поверхности, полиэтиленовый пакет, перчатки, палочка;

– блокнот для записей, ручка, фотоаппарат, ноутбук.

2. 2.2 Опыт № 1 Получение ферромагнитной жидкости из тонер-порошка и машинного масла

В глобальной сети Интернет есть множество сайтов, на которых описан способ получения ферромагнитной жидкости из тонер-порошка и машинного масла в пропорции одна третья тонер порошка, остальное машинное масло. Я взял тонер-порошок для лазерных принтеров brother и машинное масло. Смешал в пластиковой бутылке. После смешивания, я поднес магнит и ничего не произошло. Жидкость получилась, но она не обладала магнитными свойствами. Если бы жидкость обладала магнитными свойствами, она бы затвердела и изменила свою форму при движении магнита. Опыт завершился неудачей.

2.2.3 Опыт № 2 Получение ферромагнитной жидкости из тонер-порошка, девелопера и машинного масла

Из первого опыта я сделал вывод о том, что используемый тонер не является ферромагнетиком. В современных лазерных принтерах для намагничивания краски используется девелопер – специальный магнитный порошок. В получившуюся в первом опыте жидкость я добавил треть объема девелопера. Когда я поднес магнит, жидкость образовала почти незаметный холмик и не затвердела. Получилась жидкость со слабыми ферромагнитными свойствами. Опыт завершился неудачей.

2.2.4 Опыт № 3 Получение ферромагнитной жидкости из железной стружки и машинного масла

После первых двух неудавшихся опытов, я задумался о силе магнита. С помощью которого проверяю наличие магнитных свойств. Для проверки жидкости я использовал два магнита: магнит от звукового динамика и неодимовый магнит из уже не работающего жестко диска для компьютера (HDD). Для того чтобы убедится, что ферромагнитная жидкость не получается из за свойств ферромагнетика в жидкости, а не магнита я добавил в получившийся раствор обычные железные опилки (отходы от работы на слесарном станке). Магнит притянул к стенке все железные элементы жидкости! Магнитные свойства появились, но все то что я смешал уже сложно назвать жидкостью. Опыт снова завершился неудачей.

2.2.5 Опыт № 4 Получение ферромагнитной жидкости из магнитного порошка и подсолнечного масла

Итак, для получения ферромагнитной жидкости нужен хороший ферромагнетик! В специализированном магазине Мир магнитов я приобрел специальный железный магнитный порошок для опытов.

Магнитный порошок

Подсолнечное масло

На фотографиях вы видите исходные вещества которые я перемешал в пропорции: 1 часть магнитного пороша и 2 части подсолнечного масла и получил ферромагнитную жидкость.

2.2.6 Опыт № 5 Получение ферромагнитной жидкости из магнитного порошка, лимонной кислоты и подсолнечного масла.

Для того чтобы ферромагнитная жидкость не расслаивалась в нее добавляют ПАВ (поверхностно активное вещество). В качестве ПАВ я выбрал лимонную кислоту.

Лимонная кислота

Ферромагнитная жидкость после отстаивания

Через несколько часов моя ферромагнитная жидкость расслоилась, это вы можете увидеть на фотографии. Я добавил одну четвертую ложки лимонной кислоты в качестве ПАВ. Но через несколько часов эта смесь тоже расслоилась.

Эксперимент по созданию не расслаивающейся ферромагнитной жидкости завершился неудачей.

2.2.7 Опыт № 6 Изучение свойств феррмагнитной жидкости. Магнитоуправляемость.

Для изучения свойств полученной жидкости я использовал неодимовый магнит.

Магниты и инструментарий

Когда я поднес магнит к стенке пузырька с ферромагнитной жидкость часть жидкости примагнитилас к стенке, затвердела и изменила свою форму (см. фото)

Когда я положил магнит на дно и перевернул пузырек, все его содержимое стало твердым и не стекало сверху вниз.

Когда я убрал магнит, твердая вещество стало превращаться в жидкость и стекло сверху вниз

С помощью пипетки я перелил часть ферромагнитной жидкости на пластиковый диск

Обратите внимание – это жидкость.

Вот что произошло с жидкостью на которую воздействует магнит. Форма похожа на иголки ежика.

При перемещении магнита часть твердой жидкости переместилась вместе с ним, оставшаяся стала принимать жидкую форму.

Моя младшая сестра захотела сделать ферромагнитного котика у которого может пониматься шерсть дыбом.

На фанерке, оклеенной фольгой, с помощью пластилина я сделал очертания кота и заполнил его с помощью пипетки моей ферромагнитной жидкостью

Вот что получилось при поднесении магнита снизу

Мой ферромагнитный ежик

2.2.8 Опыт № 7 Изучение свойств феррмагнитной жидкости. Способность проникать в микрообъемы(закупорка отверстия)

В последнем эксперименте я пытался понять, как можно с помощью внешнего магнита закрывать отверстия от течи. Для этого я сначала налил мою жидкость в пластмассовую колбу с большим отверстием внизу. Потом поднес магнит к стенке рядом с отверстием и поднял колбу. Затвердевшая под действием магнита жидкость препятствовала вытеканию остальной жидкой части. Как только я убрал магнит, все вытекло из колбы.

2.3 Практическое применение

Применение ферромагнитных жидкостей:

  1. На основе ферромагнитной жидкости делают радиопоглощающие покрытия на самолеты.
  2. Создатели знаменитого Ferrari используют магнитореологическую жидкость в подвеске автомобиля: манипулируя магнитом, водитель может сделать подвеску в любой момент более жесткой или более мягкой.
  3. Ферромагнитная жидкость используются в некоторых высокочастотных динамиках для отвода тепла от звуковой катушки. Одновременно она работает механическим глушителем, подавляя нежелательный резонанс. Ферромагнитная жидкость удерживается в зазоре вокруг звуковой катушки сильным магнитным полем, находясь одновременно в контакте с обеими магнитными поверхностями и с катушкой
  4. Ферромагнитные жидкости имеют множество применений в оптике благодаря их преломляющим свойствам. Среди этих применений измерение удельной вязкости жидкости, помещенной между поляризатором и анализатором, освещаемой гелий-неоновым лазером.
  5. В качестве рабочего тела в датчиках угла наклона и акселерометрах.
  6. В магнитных сепараторах для разделения и сепарации материалов с различной плотностью. Магнитная жидкость обладает еще одним удивительным, поистине уникальным свойством. В ней, как и в любой жидкости, плавают тела менее плотные и тонут тела более плотные, чем она сама. Но если приложить к ней магнитное поле, то утонувшие тела начинают всплывать. Причем чем сильнее поле, тем более тяжелые тела поднимаются на поверхность. Прикладывая различное по напряженности магнитное поле, можно заставлять всплывать тела с какой-то заданной плотностью. Это свойство магнитной жидкости применяют сейчас для обогащения руды. Ее топят в магнитной жидкости, а затем нарастающим магнитным полем заставляют всплывать сначала пустую породу, а затем уже и тяжелые куски руды. Например, для разделения золота и шлиха.
  7. Для очистки водных поверхностей от нефтепродуктов при аварийных разливах и катастрофах.
  8. Печатающие и чертежные устройства. Есть печатающие и чертежные устройства, работающие на магнитной жидкости. В краску вносится немного магнитной жидкости, и такая краска выбрызгивается тонкой струйкой на протягиваемую перед ней бумагу. Если струю ничем не отклонять, то будет начерчена линия. Но на пути струйки поставлены электромагниты, подобно отклоняющим электромагнитам кинескопа телевизора. Роль потока электронов здесь играет тонкая струйка краски с магнитной жидкостью – ее-то и отклоняют электромагниты, и на бумаге остаются буквы, графики, рисунки.
Читайте также:  Как сделать лампу из коктейльных трубочек?

3. ЗАКЛЮЧЕНИЕ

Выводы

  1. В домашних условиях можно приготовить ферромагнитную жидкость и изучить ее свойства.
  2. Успех опытов зависит от силы магнита и качества ферромагнетика. В случае применения тонер-порошка или девелопера для принтера надо быть уверенным, что он содержит магнитный порошок.
  3. С помощью магнита можно увидеть некоторые свойства ферромагнитной жидкости и понять как работают разные механизмы.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

Исследование свойств ферромагнитной жидкости и возможность её применения в качестве смазочно-охлаждающей жидкости (СОЖ)

Трехгорный Технологический Институт Национальный Исследовательский Ядерный Университет МИФИ

Токарев Артём Сергеевич, старший преподаватель кафедры технология машиностроения.

УДК 62-4

Актуальность: Многие вещества притягиваются магнитом, но есть и такие, которые отталкиваются. Во многих случаях это взаимодействие настолько слабо, что его удаётся обнаружить только приборами. Возможно ли усилить магнитные свойства материала и сохранить при этом другие характеристики? Например, инженеры уже большой промежуток времени мечтают о системах, которые позволят придать некоторым веществам либо телам магнитные свойства, при этом абсолютно не разрушая их структуры и почти не изменяя их начальные свойства. В данной статьи представлены рассуждения о магнитной жидкости.

  • провести исследования по обнаружению и наблюдению характера поведения ферромагнитной жидкости;
  • проверить теорию о затвердевании магнитной жидкости под напряжением величиной 12В;
  • проверить возможность применения феррофлюида в качестве СОЖ.
  • изучить ферромагнитную жидкость (ее природу и поведение);
  • изготовить данную жидкость «своими руками»;
  • провести эксперименты по подтверждению или опровержению характера поведения феррофлюида;
  • подобрать наиболее оптимальные пропорции в процессе изготовления феррожидкости (добиться максимального эффекта);
  • реализовать опыт, подтверждающий или опровергающий поведение ФМЖ под напряжением.

Научная новизна: Научная новизна данной статьи заключается в проведении экспериментов по наблюдению за поведением ферромагнитной жидкости, её изготовлению своими руками в домашних условиях и проверке мифа под названием «об затвердевании магнитной жидкости под напряжением». Также было высказано предположение о применении феррофлюида в качестве смазочно-охлаждающей жидкости.

Ферромагни́тная жи́дкость — жидкоcть, которая cильно поляризуется при действии на нее магнитного поля.

Феррофдюид предcтавляет cобoй cистему, сocтoящую из ферромагнитных частиц находящихся во взвешенном сocтоянии в несущей жидкости.

Феррoфлюид oбладает свoйствами нескольких сoстoяний материи. В нашем случае это два состояния суспензии: твердый металл и жидкость, в которой данный металл содержится. Споcoбность изменять свое cостояние под воздействием магнитнoго пoля пoзволяет использoвать ферромагнитные жидкoсти не толькo в качестве уплoтнителей и смазки, но и мoжет oткрыть другие применения в будущих нанoэлектрoмеханических системах.

Феррoмагнитные жидкости сoстоят из частиц дoстаточнo малых размеров (их обычный размер от 5 до 10 нанoметров) какого-либo материала, сoдержащего железo (например магнетита). Стабилизация данных частиц в среде происходит благoдаря веществам, которые препятствуют слипанию частиц, тем самым мешая крошечным частичкам oбразовать слишком тяжелые кластеры, т.е. поверхностно-активным веществам или пoлимерам.

Молекулы ПАВ имеют «гoлoвку» и «хвoст», соответсвенно полярный и неполярный концы (или наобoрот); один из инх адсoрбируется к частице, а другoй прикрепляется к мoлекулам жидкости-носителя, образуя, соответственно, обычную или oбратную мицеллу вокруг частицы. В результате прoстранственные эффекты препятствуют слипанию частиц.

Феррoжидкости довольно устойчивы: их твердые частицы не слипаются и не выделяются в отдельную фазу даже при oчень сильном магнитном пoле. Тем не менее, поверхностно-активные вещества в сocтаве жидкости имеют свойство распадаться со временем (период распада примерно несколько лет), и в конце концов частицы слипнутся, выделятся из жидкости и перестанут влиять на реакцию жидкости на магнитное поле.

Несмотря на название, ферромагнитные жидкости не проявляют ферромагнитных свoйств, пoскoльку не сoхраняют oстатoчной намагниченнoсти после исчезновения внешнегo магнитного пoля.

У магнитных жидкостей oчень высокая магнитная вoсприимчивость, и для критического магнитнoго поля, чтобы возникли складки на поверхности, может быть дoстатoчно маленькoго стержневого магнита.

Магнитная жидкость имеет три уникальных сoбственности:

  1. Феррoжидкость пoддерживается силами магнитного поля (такoе свoйствo пoзволяет испoльзoвать ее в колонках, наушниках, акустически, шумоизоляции и многих других областях).
  2. Жидкость может принимать пространственные формы магнитного поля, которые проникают через нее (чтo может помочь в визуализации магнитных линий, протекающих через объект или использованы в художественных целях).
  3. Магнитная жидкость меняет вязкость в зависимости от изменения интенсивности магнитного поля.

Феррофлюид находит множество практических применений в повседневной жизни. Ниже представлены некоторые отрасли, в которых он применяется:

  1. Электронные устройства.
  2. Машиностроение.
  3. 3. Обороннаяпромышленность.
  4. Авиакосмическая промышленность.
  5. Теплопередача.
  6. Медицина.

Для того, чтобы определить свойства и поведение феррофлюида были проведены несколько испытаний.

Для проведения данных опытов нам понадобилось:

  • тонер для лазерного принтера (Content, HP LJ);
  • моторное масло;
  • мерная ёмкость (объёмом 200 мл);
  • магнит;
  • палочка из немагнитного материала.

Данный опыт разбили на несколько шагов:

Первым шагом было помещено в резервуар около одной трети (60 мл) масла и 6 г порошка:

  1. перемешали палочкой получившуюся жидкость. При данной операции наблюдалось изменение консистенции и, естественно, цвета смеси;
  2. поднесли магнит к нашей ёмкости. При его движении во всех направлениях плоскости стенки стакана раствор не реагировал.

Вторым шагом увеличили количество тонера. В ту же смесь добавили ещё 6 г тонера:

  1. размешали полученный раствор;
  2. при поднесении магнита к стенке стакана и его движении в разные стороны наблюдалась слабая реакция смеси, она вставала волнами в зоне действия магнитного поля.

Т. к. появлялся какой-то эффект, то т ретьим шагом было досыпано 6 г порошка в раствор достаточно вязкой консистенции:

  1. перемешали полученную помесь;
  2. к стенке ёмкости поднесли магнит и начали скользить им по стенке сосуда во все стороны плоскости. Смесь следовала за магнитом при данных действиях.

Для данного исследования был взят чистый резервуар.

Сначала в ёмкость добавили 20 мл масла и 6 г тонера:

  1. перемешали данную вязкую «кашицу»;
  2. поднесли и приложили магнит к стенке стакана. При движении магнита по стенке стакана обнаружилось, что наша жидкость определенной консистенции следует за магнитом, как это было в эксперименте №1.

После в приготовленную нами жидкость добавили 12 г порошка:

  1. перемешали раствор и увидели, что образовалась достаточно вязкая и грязевидная консистенция, следовательно использовать феррожидкость как СОЖ нельзя ;
  2. взяли магнит и подвели его к стенке стакана. При движении магнита во всех направлениях плоскости смесь довольно хорошо следовали за магнитом.

В итоге, исходя из данных, полученных при проведении этих экспериментов можно вывести зависимость высоты поднятия столба жидкости, следующей за магнитом от изменения количества тонера представленную в виде графика (Рисунок 1).

Рисунок 1– Зависимость изменения высоты поднятия жидкости под действием магнитного поля от количества добавленного тонера

Также был проведен ещё один опыт по опровержению или подтверждению так называемого «мифа о затвердевании жидкости» при прохождении через неё напряжения величиной в 12В (эксперимент №3).

Что будет нужно: аккумулятор, провода и феррофлюид.

  1. Был взят тот же феррофлид, который готовили для предыдущих экспериментов и подключен к нему аккумулятор с общим напряжением 12В посредством провода (с сечением 2,5 мм 2 ). При данном воздействии не наблюдалось никаких изменений, суспензия оставалась такой же вязкости, которой и была в начале эксперимента.
  2. Также провели этот эксперимент для нагретой жидкости. При нагревании данной жидкости и подаче того же самого напряжения жидкость никак не меняла своего поведения.
  • выведены наиболее оптимальные пропорции для приготовления жидкости в соотношении примерно 1:1;
  • доказан характер воздействия магнитных сил на феррофлюид;
  • опровергнут «миф о затвердевании жидкости» при действии на неё напряжением в 12В.

7.02.2017, 21:11 Феоктистов Игорь Борисович
Рецензия: Название данной статьи сразу вызвало у меня самый острый, живой интерес. Я надеялся найти в ней ответы на следующие вопросы (или хотя бы на часть их): -выбор основы, типа жидкой смазки по вязкости, химической и температурной характеристике, допустимости и необходимости применения присадок для изготовления ферримагнитной жидкости; – влияние типа и количества ферримагнитной составляющей, напряженности магнитного поля и температуры на вязкость и теплопроводность ферримагнитной композиции. Только эти параметры позволят оценить возможности использования композиции в качестве смазывающей или охлаждающей жидкости. Ни один из этих вопросов в статье не освещен и для отросли машиностроения статья не содержит полезной информации и не может быть рекомендована к опубликованию в журнале.

Читайте также:  Панно своими руками

14.10.2017, 12:13 Петрухин Геннадий Михайлович
Рецензия: В статье поставлены цели, актуальность которых обосновывется только широкой областью применения магнитных жидкостей. Нет объективного анализа, обосновывающего необходимость проводимых экспериментов.Обобщающие выводы сделаны по результатам ограниченного числа экспериментов. Статья требует доработки.

8.11.2017, 4:02 Назарова Ольга Петровна
Рецензия: “исходя из данных, полученных при проведении этих экспериментов можно вывести зависимость”, но при проведении экспериментов берете различное количество масла. График к какому эксперименту относится? “опровергнут «миф о затвердевании жидкости» – не обосновали математически после проведения экспериментов. Надо было использовать двухфакторный дисперсионный анализ или ПФЭ. Статья требует доработки.

Ферромагнитная жидкость

1,3 см кубик под камерой.

Слева — боком. Обратите внимание на “фазовый сдвиг”, разницу в цвете. Один полюс (северный) темнее и краснее, другой (южный) — светлее. Это можно заметить в большей или меньшей степени на всех кадрах, где видны два полюса.

По середине между двумя полюсами хорошо видна диэлектрическая инерциальная плоскость инерции (dielectric inertial plane).

Справа — этот же кубик под камерой, повернут одним полюсом к нам.

Поле круглое. Яркие линии, идущие по часовой стрелке — из ближнего к зрителю полюса.

Менее яркие линии под ними, идущие, как кажется, против часовой стрелки, — из противоположной фазы магнита, которая расположена дальше от клетки.

Кажется, что на одном полюсе движение по часовой стрелке, на другом — против. В действительности же они движутся в одном и том же направлении, по часовой стрелке, просто у них противоположный пространственный вектор.

Линии образуют гипотрохоидный узор.

На обоих полюсах магнита есть по две “воронки”.

Из одной “выходят” эти светлые линии. Наблюдается центробежная дивергенция, в чем и проявляется магнетизм, потеря инерции.

В другую “заходят” темные участки (клинья) между яркими линиями. Наблюдается центростремительная конвергенция. Иносказательно, свет уходит как вода под большим давлением в сливное отверстие.

Справа — слабый магнит класса N38

Наблюдается большой радиус поля. Для наглядности обвел белым.

Слева — сильный магнит класса N60 такого же размера.

Видим меньший радиус поля, с увеличением силы поле не расширяется.

Отчетливое черное кольцо близко к центру вызвано тем, что настолько сильный магнит сам “поглощает” своё поле. Центростремительная конвергенция, которая являет собой не магнетизм, а диэлектричество, “засасывает” магнит сам в себя.

Тот же сильный магнит, вид под углом.

В центре углубление в форме шара (камера не передает грубину).

Настоящий магнетизм наблюдается на периферии магнита.

В центре — черная “дыра”, диэлектричество. Можно измерить гауссметром и магнитометром.

Слева — цилиндр за камерой.

Справа — примагнитили к нему такой же спереди, через стекло камеры.

Светлый круг — это центр нового магнита, получившегося при соединении двух цилиндров.

Слева — один магнит (на правой стороне камеры).

Справа — поднесли ещё один магнит такой же силы.

Маленькая черная “дыра” (третья слева) — это не полюс, а нулевая точка, в которой находится равновесие между двумя магнитами.

Не смотря на то, что кажется, будто магниты устремляются друг другу, на самом деле, они стремятся к точке равновесия.

Магнит стремится в направлении контрпространства (counter-space). То, что его туда притягивает, является не магнетизмом, а диэлектрическое опустошение (dielectric voidance) или ускорение (dielectric acceleration), усиление инерции.

Слева — два магнита одинаковой силы отталкиваются.

Справа — эти магниты почти вплотную поднесены друг к другу.

При сближении возрастает интенсивность свечения. Линии становятся ярче, в сравнении с правым и левым краем

Магнит класса N55 под клеткой

На правой картинке левый полюс краснее и темнее, северный.

Камера с разноцветными лампами.

Более чувствительная камера.

Для тех, кто смотрел до конца, — бонус.

Не смотря на толщину ферромагнитного слоя меньше 1 микрона, можно наблюдать голографическую глубину в несколько сантиметров.

Благодарю за внимание.

Автор наблюдений, исследований и теорий — Ken Wheeler. Или, по крайней мере, он один из авторов.

Я только сделал скриншоты, скомпилировал, попытался чуть-чуть разобраться и перевёл.

Сам я стопроцентный гуманитарий, поэтому заранее приношу извинения за возможные неточности в терминологии.

Состав и свойства ферромагнитной жидкости

Введение

Все мы привыкли к тому, что магнитными свойствами обладают только твердые тела. А возможно ли создать жидкий магнит? Оказывается, возможно. Жидким магнитом можно назвать ферромагнитную жидкость, которая способна проявлять магнитные свойства, находясь в магнитном поле. Более того, в сильных магнитных полях эта жидкость может утратить текучесть, став подобной твёрдому телу. Многие слышали о таких веществах, но большинство считают их экзотическим и дорогим продуктом высоких технологий. Мы решили проверить, реально ли приготовить магнитную жидкость в простой школьной лаборатории.

Таким образом, объектом нашего исследования является ферромагнитная жидкость. Предмет исследования – способы получения ферромагнитной жидкости и её свойства.

Цель – получение ферромагнитной жидкости и изучение её свойств. Для реализации целей поставлены следующие задачи:

1) анализ научной литературы о предмете исследования;

2) получение магнитной жидкости в условиях школьной лаборатории;

4) рассмотрение свойств магнитной жидкости;

5) оценка результатов практической деятельности.

Гипотеза исследования: в обычной школьной лаборатории можно приготовить ферромагнитную жидкость и провести с ней опыты.

Методы исследования:изучение теоретических источников,практический эксперимент, наблюдение, сравнительный анализ.

Практическая значимость исследования заключается в том, что феромагнитную жидкость можно использовать для проведения опытов на уроках и факультативных занятиях по химии и физики, что значительно повысит познавательный интерес к изучению предметов.

Глава 1.

Состав и свойства ферромагнитной жидкости

Ферромагни́тная жи́дкость (ФМЖ, магни́тная жи́дкость, феррофлюид) (от латинского ferrum — железо) —жидкость, сильно поляризующаяся в присутствии магнитного поля.

Ферромагнитные жидкости представляют собой коллоидные системы, состоящие из ферромагнитных частиц находящихся во взвешенном состоянии в несущей жидкости.

Ферромагнитные жидкости обладают свойствами более чем одного состояния материи. В данном случае два состояния это твердый металл и жидкость, в которой он содержится.

Ферромагнитные жидкости состоят из частиц нанометровых размеров (обычный размер от 5 до 10 нм) магнетита, гематита или другого материала, содержащего железо, стабилизированные в полярной (водной или спиртовой) и неполярной (углеводороды и силиконы) средах с помощью поверхностно-активных веществ или полимеров. Чтобы обволакивать частицы в ферромагнитной жидкости используются, следующие поверхностно-активные вещества (ПАВ): олейновая кислота, полиакриловая кислота, полиакрилат натрия, соевый лецитин. ПАВ препятствуют слипанию частиц, мешая им образовать слишком тяжелые кластеры, которые не смогут удерживаться во взвешенном состоянии за счет броуновского движения.

Ферромагнитные жидкости обладают хорошей текучестью в сочетании с магнитными свойствами. Под воздействием сильного вертикально направленного магнитного поля поверхность жидкости с парамагнитными свойствами самопроизвольно формирует регулярную структуру из складок. Этот эффект известен как «нестабильность в нормально направленном поле».

Размеры магнитных частиц достаточно малы, чтобы тепловое движение распределило их равномерно по несущей жидкости, чтобы они давали вклад в реакцию жидкости в целом на магнитное поле. Аналогичным образом ионы в водных растворах парамагнитных солей (например, водный раствор сульфата меди(II) или хлорида марганца(II)) придают раствору парамагнитные свойства.

Ферромагнитные жидкости устойчивы: их твердые частицы не слипаются и не выделяются в отдельную фазу даже в очень сильном магнитном поле. Тем не менее, поверхностно-активные вещества в составе жидкости имеют свойство распадаться со временем (примерно от двух до пяти лет), и в конце концов частицы слипнутся, выделятся из жидкости и перестанут влиять на реакцию жидкости на магнитное поле. Также ферромагнитные жидкости теряют свои магнитные свойства при своей температуре Кюри, которая для них зависит от конкретного материала ферромагнитных частиц, ПАВ и несущей жидкости.

Имеются вещества, сходные по свойствам с ферромагнитной жидкостью – магнитореалогическая жидкость и парамагнетики. Термин «магнитореологическая жидкость

» относится к жидкостям, которые подобно ферромагнитным жидкостям затвердевают в присутствии магнитного поля. Разница между ферромагнитной жидкостью и магнитореологической жидкостью в размере частиц. Частицы в ферромагнитной жидкости это в основном частицы нанометровых размеров, находящиеся во взвешенном состоянии из-за броуновского движения и не оседающие в нормальных условиях. Частицы в магнитореологической жидкости в основном микрометрового размера (на 1—3 порядка больше); они слишком тяжелы, чтобы броуновское движение поддерживало их во взвешенном состоянии, и поэтому со временем оседают из-за естественной разности в плотности частиц и несущей жидкости. Как следствие, у этих двух типов жидкостей разные области применения.

Парамагнетики — вещества, которые намагничиваются во внешнем магнитном поле в направлении внешнего магнитного поля. Парамагнетики относятся к слабомагнитным веществам. Атомы парамагнетика обладают собственными магнитными моментами, которые под действием внешних полей ориентируются по полю и тем самым создают результирующее поле, превышающее внешнее. К парамагнетикам относятся и хлорид железа (II) (FeCl2), которое используется для приготовления ферромагнитной жидкости.

Не нашли то, что искали? Воспользуйтесь поиском:

Ссылка на основную публикацию