Пушка Гаусса

Пушка Гаусса своими руками

Здравствуйте, дорогие друзья! Сегодня я хочу рассказать о том, как сделать электромагнитную пушку Гаусса. Она является разновидностью электромагнитного оружия, её также называют «Электромагнитный ускоритель масс Гаусса». Изобрел эту пушку немецкий ученый Карл Гаусс. Но к сожалению этот метод ускорения масс используется в основном в любительских самодельных установках потому, что не является достаточно эффективным для практического применения в качестве оружия.

Как работает пушка Гаусса?

Гаусс пушка состоит из катушки соленоида, через него проходит пластиковая трубочка, в которую с одной стороны вставляется металлический снаряд. Чтобы произвести выстрел, к соленоиду подключается заряженный конденсатор большой емкости и высоким рабочим напряжением. В соленоиде возникает электромагнитное поле, которое в момент протекания импульса разрядного тока от конденсатора втягивает снаряд в соленоид и разгоняет его. Конструкция пушки настолько проста, что её может собрать любой начинающий радиолюбитель из подручных материалов.

Но следует помнить, что изготовление оружия в некоторых странах запрещено и преследуется по закону! Следует учесть тот факт, что это всего лишь действующая модель пушки Гаусса с дульной энергией около 1,5 Дж и применяется только для развлекательной стрельбы по лампочкам, баночкам и картонным коробкам. Из этого следует вывод: -Делайте смело и ничего не бойтесь! Как говорил космонавт Юрий Гагарин: -Поехали.

Схема электромагнитной пушки Гаусса

Из материалов вам понадобиться:

  • Пластиковая трубочка соответствующая диаметру пули. Но к сожалению, я трубку не нашел и поэтому, сделал ствол из бумаги, намотал её на карандаш и намазал клеем.
  • Диод любой на 1,5 А
  • Лампочка 40 Ватт 220 В, можно 60 Ватт 220 В
  • Кнопка с контактами на замыкание при нажатии 1,5 А
  • Автоматический выключатель не менее 40 А
  • Медный провод в лаковой изоляции диаметром 0,5-0,7 мм
  • Конденсатор электролитический 1000 мкф 450 В, можно использовать сборку из конденсаторов. Чем больше емкость, тем лучше стреляет. Рабочее напряжение у используемых конденсаторов не менее 250 В.

Чертеж электромагнитного ускорителя для пушки Гаусса

Особое внимание следует уделить изготовлению катушки соленоида, от правильности изготовления зависит мощность выстрела и дальность полета пули. Обмотка соленоида наматывается проводом в лаковой изоляции диаметром 0,5-0,7 мм и содержит 200 витков. Провод мотаем виток к витку, каждый слой заливаем нитролаком и оборачиваем бумагой.

Обмотку своей пушки я намотал в пять слоев проводом 0,5 мм, в каждом слое у меня получилось по 40 витков, а в сумме 200 витков. Сопротивление катушки замерил мультиметром получилось 8 ом.

Пули для Гаусс пушки я изготовил из обычного строительного гвоздя диаметром 6 мм и длиною 200 мм.

Пули для Гаусс пушки из строительного гвоздя 6х200 мм

Как стрелять из Гаусс пушки?

Включаем вилку в розетку и нажимаем кнопку «Заряд», как только лампочка потухнет, значит конденсатор полностью зарядился.

Вставляем пулю в ствол.

Нажимаем кнопку «Огонь». Происходит выстрел, пуля с большой скоростью вылетает из ствола.

Хочу напомнить о технике безопасности:

    • Не направляйте пушку в сторону домашних животных и людей
    • Не заглядывайте в ствол
    • Не стреляйте в металлические предметы во избежание рекошета
    • Не трогайте контакты заряженного конденсатора, во избежание поражения электрическим током

А сейчас о самом главном… Баллистические испытания пушки Гаусса.

Испытания пушки проводил с расстояния в 15 сантиметров до цели. Максимальная дальность полета пули около 2 метров. Стреляет абсолютно бесшумно, слышен лишь удар пули о картонную коробку.

Коробка из тонкого картона.

Коробка из рифленого картона.

Коробка из более плотного рифленого картона.

Резиновая кричащая курица.

Лампочка 500 Ватт 220 В.

В заключение хочу сказать, что действующая модель пушки Гаусса идеально подходит для демонстрации возможностей соленоида и электромагнитной индукции, возникающей в нем при отдаче конденсатором накопленной энергии. А так же для развлекательной стрельбы по коробкам, баночкам и лампочкам.

Хотите удивить своих друзей? Соберите пушку Гаусса своими руками!

И обязательно посмотрите видеоролик, в котором вы увидите, как стреляет Гаусс пушка.
До встречи в новых статьях!

Выстрел в будущее: как собрать пушку Гаусса своими руками

Обладать оружием, которое даже в компьютерных играх можно найти только в лаборатории сумасшедшего ученого или возле временного портала в будущее, — это круто. Наблюдать, как равнодушные к технике люди невольно фиксируют на устройстве взгляд, а заядлые геймеры спешно подбирают с пола челюсть, — ради этого стоит потратить денек на сборку пушки Гаусса.

Как водится, начать мы решили с простейшей конструкции — однокатушечной индукционной пушки. Эксперименты с многоступенчатым разгоном снаряда оставили опытным электронщикам, способным построить сложную систему коммутации на мощных тиристорах и точно настроить моменты последовательного включения катушек. Вместо этого мы сконцентрировались на возможности приготовления блюда из повсеместно доступных ингредиентов. Итак, чтобы построить пушку Гаусса, прежде всего придется пробежаться по магазинам. В радиомагазине нужно купить несколько конденсаторов с напряжением 350−400 В и общей емкостью 1000−2000 микрофарад, эмалированный медный провод диаметром 0,8 мм, батарейные отсеки для «Кроны» и двух 1,5-вольтовых батареек типа С, тумблер и кнопку. В фототоварах возьмем пять одноразовых фотоаппаратов Kodak, в автозапчастях — простейшее четырехконтактное реле от «Жигулей», в «продуктах» — пачку соломинок для коктейлей, а в «игрушках» — пластмассовый пистолет, автомат, дробовик, ружье или любую другую пушку, которую вы захотите превратить в оружие будущего.

Рентген пушки Гаусса

Мотаем на ус

Главный силовой элемент нашей пушки — катушка индуктивности. С ее изготовления стоит начать сборку орудия. Возьмите отрезок соломинки длиной 30 мм и две большие шайбы (пластмассовые или картонные), соберите из них бобину с помощью винта и гайки. Начните наматывать на нее эмалированный провод аккуратно, виток к витку (при большом диаметре провода это довольно просто). Будьте внимательны, не допускайте резких перегибов провода, не повредите изоляцию. Закончив первый слой, залейте его суперклеем и начинайте наматывать следующий. Поступайте так с каждым слоем. Всего нужно намотать 12 слоев. Затем можно разобрать бобину, снять шайбы и надеть катушку на длинную соломинку, которая послужит стволом. Один конец соломинки следует заглушить. Готовую катушку легко проверить, подключив ее к 9-вольтовой батарейке: если она удержит на весу канцелярскую скрепку, значит, вы добились успеха. Можно вставить в катушку соломинку и испытать ее в роли соленоида: она должна активно втягивать в себя отрезок скрепки, а при импульсном подключении даже выбрасывать ее из ствола на 20−30 см.

Многоступенчатая мощь Освоившись с простой однокатушечной схемой, можно испытать свои силы в постройке многоступенчатого орудия — ведь именно такой должна быть настоящая пушка Гаусса. В качестве коммутирующего элемента для низковольтных схем (сотни вольт) идеально подходят тиристоры (мощные управляемые диоды), для высоковольтных (тысячи вольт) — управляемые искровые разрядники. Сигнал на управляющие электроды тиристоров или разрядников будет посылать сам снаряд, пролетая мимо фотоэлементов, установленных в стволе между катушками. Момент выключения каждой катушки будет всецело зависеть от питающего ее конденсатора. Будьте внимательны: избыточное увеличение емкости конденсатора при заданном импедансе катушки может привести к увеличению длительности импульса. В свою очередь это может привести к тому, что после прохождения снарядом центра соленоида катушка останется включенной и замедлит движение снаряда. Детально отследить и оптимизировать моменты включения и выключения каждой катушки, а также измерить скорость движения снаряда поможет осциллограф.

Препарируем ценности

Для формирования мощного электрического импульса как нельзя лучше подходит батарея конденсаторов (в этом мнении мы солидарны с создателями самых мощных лабораторных рельсотронов). Конденсаторы хороши не только большой энергоемкостью, но и способностью отдать всю энергию в течение очень короткого времени, до того как снаряд достигнет центра катушки. Однако конденсаторы необходимо как-то заряжать. К счастью, нужное нам зарядное устройство есть в любом фотоаппарате: конденсатор используется там для формирования высоковольтного импульса для поджигающего электрода вспышки. Лучше всего нам подходят одноразовые фотоаппараты, потому что конденсатор и «зарядка» — это единственные электрические компоненты, которые в них есть, а значит, достать зарядный контур из них проще простого.

Читайте также:  Качер Бровина своими руками

Quake railgun Знаменитый рэйлган из игр серии Quake с большим отрывом занимает первое место в нашем рейтинге. В течение многих лет виртуозное владение «рельсой» отличало продвинутых игроков: оружие требует филигранной точности стрельбы, однако в случае попадания скоростной снаряд буквально разрывает противника на куски.

Разборка одноразового фотоаппарата — это этап, на котором стоит начать проявлять осторожность. Вскрывая корпус, старайтесь не касаться элементов электрической цепи: конденсатор может сохранять заряд в течение долгого времени. Получив доступ к конденсатору, первым делом замкните его выводы отверткой с ручкой из диэлектрика. Только после этого можно касаться платы, не опасаясь получить удар током. Удалите с зарядного контура скобы для батарейки, отпаяйте конденсатор, припаяйте перемычку к контактам кнопки зарядки — она нам больше не понадобится. Подготовьте таким образом минимум пять зарядных плат. Обратите внимание на расположение проводящих дорожек на плате: к одним и тем же элементам схемы можно подключиться в разных местах.

S.T.A.L.K.E.R. Gauss gun Снайперское орудие из зоны отчуждения получает второй приз за реализм: сделанный на основе винтовки LR-300 электромагнитный ускоритель сверкает многочисленными катушками, характерно гудит при зарядке конденсаторов и насмерть поражает противника на колоссальных расстояниях. Источником питания служит артефакт «Вспышка».

Расставляем приоритеты

Подбор емкости конденсаторов — это вопрос компромисса между энергией выстрела и временем зарядки орудия. Мы остановились на четырех конденсаторах по 470 микрофарад (400 В), соединенных параллельно. Перед каждым выстрелом мы в течение примерно минуты ждем сигнала светодиодов на зарядных контурах, сообщающих, что напряжение в конденсаторах достигло положенных 330 В. Ускорить процесс заряда можно, подключая к зарядным контурам по несколько 3-вольтовых батарейных отсеков параллельно. Однако стоит иметь в виду, что мощные батареи типа «С» обладают избыточной силой тока для слабеньких фотоаппаратных схем. Чтобы транзисторы на платах не сгорели, на каждую 3-вольтовую сборку должно приходиться 3−5 зарядных контуров, подключенных параллельно. На нашем орудии к «зарядкам» подключен только один батарейный отсек. Все остальные служат в качестве запасных магазинов.

Расположение контактов на зарядном контуре одноразового фотоаппарата Kodak. Обратите внимание на расположение проводящих дорожек: каждый провод схемы можно припаять к плате в нескольких удобных местах.

Определяем зоны безопасности

Мы никому не посоветуем держать под пальцем кнопку, разряжающую батарею 400-вольтовых конденсаторов. Для управления спуском лучше установить реле. Его управляющий контур подключается к 9-вольтовой батарейке через кнопку спуска, а управляемый включается в цепь между катушкой и конденсаторами. Правильно собрать пушку поможет принципиальная схема. При сборке высоковольтного контура пользуйтесь проводом сечением не менее миллиметра, для зарядного и управляющего контуров подойдут любые тонкие провода. Проводя эксперименты со схемой, помните: конденсаторы могут иметь остаточный заряд. Прежде чем прикасаться к ним, разряжайте их коротким замыканием.

Command & conquer 3: tiberium wars railgun В одной из самых популярных стратегических игр пехотинцы Глобального Совета Безопасности (GDI) оснащаются мощнейшими противотанковыми рельсотронами. Кроме того, рэйлганы устанавливаются и на танки GDI в качестве апгрейда. По степени опасности такой танк — это примерно то же самое, что Звездный разрушитель в Star Wars.

Подводим итог

Процесс стрельбы выглядит так: включаем тумблер питания; дожидаемся яркого свечения светодиодов; опускаем в ствол снаряд так, чтобы он оказался слегка позади катушки; выключаем питание, чтобы при выстреле батарейки не отбирали энергию на себя; прицеливаемся и нажимаем на кнопку спуска. Результат во многом зависит от массы снаряда. Нам с помощью короткого гвоздя с откусанной шляпкой удалось прострелить банку с энергетическим напитком, которая взорвалась и залила фонтаном полредакции. Затем очищенная от липкой газировки пушка запустила гвоздь в стену с расстояния в полсотни метров. А сердца поклонников фантастики и компьютерных игр наше орудие поражает без всяких снарядов.

Ogame Gauss cannon Ogame — это многопользовательская космическая стратегия, в которой игроку предстоит почувствовать себя императором планетных систем и вести межгалактические войны с такими же живыми противниками. Ogame переведена на 16 языков, в том числе русский. Пушка Гаусса — одно из самых мощных оборонительных орудий в игре.

Пушка Гаусса

Довольно часто в литературе научно-фантастического жанра упоминается пушка Гаусса. Она выступает там в роли высокоточного смертоносного оружия. Примером такого литературного произведения являются книги из серии «S.T.A.L.K.E.R.», написанные по серии игр S.T.A.L.K.E.R., где Гаусс-пушка была одним из мощнейших видов оружия. Но первым в научной фантастике пушку Гаусса воплотил в реальность Гарри Гаррисон в своей книге «Месть Стальной Крысы» (неправда, задолго до Гаррисона, А. Казанцев, «Пылающий остров», возможно, были ещё более ранние упоминания). Цитата из книги: «Каждый имел при себе гауссовку — многоцелевое и особо смертоносное оружие. Его мощные батареи накапливали впечатляющий заряд. Когда нажимали на спуск, в стволе генерировалось сильное магнитное поле, разгоняющее снаряд до скорости, не уступающей скорости снаряда любого другого оружия с реактивными патронами. Но гауссовка имела то превосходство, что обладала более высокой скорострельностью, была абсолютно бесшумной и стреляла любыми снарядами, от отравленных иголок до разрывных пуль.»

В компьютерных играх

  • В игре Crimsonland присутствует пушка Гаусса, которая бесшумно пронизывает врагов, нанося тяжёлые повреждения.
  • В Warzone 2100 при развитии до 70 % открывается доступ к пушке Гаусса.
  • В BattleTech, в сериях MechWarrior и MechCommander.
  • В стратегиях Command & Conquer 3: Tiberium Wars и Command & Conquer 3: Kane’s Wrath существует улучшение «Пушки Гаусса», увеличивающее урон для танков «Хищник» и «Мамонт», роботов «Титан» и защитных орудий «Страж». Также Спецназ ГСБ в игре вооружены Скорострельными Гаусс-винтовками.
  • В игре S.T.A.L.K.E.R. гаусс-пушка имеет огромную мощность и медленно перезаряжается. Она работает на батареях, которые используют энергию артефакта «Вспышка». В игре «S.T.A.L.K.E.R Зов Припяти» под аномалией «Железный лес» есть помещение где проводились её испытание, там же стоит огромная пушка Гаусса.
  • В «StarCraft» пехотинцы вооружены автоматической винтовкой Гаусса C-14 «Impaler». Призраки также имеют винтовки C-10, которые называются «Картечные винтовки».
  • В «Crysis» винтовка Гаусса представляет собой снайперское оружие, наносящее максимальный урон.
  • В «Crysis 2» пушка Гаусса представляет собой модификацию для штурмовой винтовки, наряду с подствольным гранатомётом. Обладает большим уроном и медленной перезарядкой.
  • В «Fallout 2» винтовка Гаусса является самым мощным оружием с высокой дальностью стрельбы, почти не уступающей снайперским винтовкам.
  • В «Fallout 3» и в «Fallout New Vegas» винтовка Гаусса — энергетическая снайперская винтовка, оснащённая оптическим прицелом и отличающаяся высокой эффективностью на средних и больших дистанциях. Наносит очень большой урон.
  • В «Fallout Tactics» есть гаусс-пистолет, гаусс-винтовка и четырёхствольный гаусс-пулемёт.
  • В игре X-COM: Terror From The Deep орудие Гаусса является одной из первых разработок для уничтожения инопланетян под водой.
  • В играх X³: Reunion/X³: Terran Conflict Гаусс-пушка — мощное оружие для эсминцев, обладающее хорошей дальностью, но низкой скоростью полёта снарядов. Энергии практически не тратит, но требует специальных боеприпасов.
  • B Ogame пушка Гаусса — мощное оборонительное сооружение.
  • В Red Faction: Guerrilla Гауссова винтовка является оружием высокой мощности, но обладает средней разрушающей силой по сравнению с другими видами оружия, несущими разрушающий характер.
  • В MMOTPS игре S4 League пушка Гаусса представляет из себя пулемет, у которого при беспрерывной стрельбе постепенно снижается точность.
  • В серии игр Warhammer 40.000 пушки Гаусса активно используются некронами. Под пушкой Гаусса в этом случае подразумевается энергетическое оружие стреляющее зелеными молниями и разрушающее межмолекулярные связи, в некоторых случаях утверждается, что жертва подвергается аннигиляции.

См. также

Ссылки

Примечания

Wikimedia Foundation . 2010 .

Смотреть что такое “Пушка Гаусса” в других словарях:

Пушка — У этого термина существуют и другие значения, см. Пушка (значения). Полевая пушка XVII века … Википедия

Читайте также:  Простой электронный таймер своими руками

Гаусса пушка — … Википедия

Винтовка Гаусса — Не следует путать с рельсотроном. Пушка Гаусса (англ. Gauss gun, Gauss cannon) одна из разновидностей электромагнитного ускорителя масс. Названа по имени учёного Гаусса, исследовавшего физические принципы электромагнетизма, на которых основано… … Википедия

Космическая пушка — Космическая пушка метод запуска объекта в космическое пространство с помощью огнестрельного оружия типа огромной пушки или электромагнитной пушки. Относится к безракетным методам вывода объектов на орбиту. В проекте высотных исследований… … Википедия

Царь-пушка — У этого термина существуют и другие значения, см. Царь (значения). Координаты: 55°45′04″ с. ш. 37°37′05″ в. д. / 55.751111° с. ш. 37.618056° в. д. … Википедия

Гаубица-пушка — 152 мм гаубица пушка обр. 1937 года (МЛ 20) в музее Хямеэнлинна, Финляндия … Википедия

Парижская пушка — «Парижская пушка» на огневой позиции. Тип: Сверхтяжёлое железнодорожное оружие Страна … Википедия

Базилика (пушка) — У этого термина существуют и другие значения, см. Базилика (значения). Дарданелльская Пуш … Википедия

Crysis (серия игр) — Crysis Логотип Crysis Жанр action Разработчик … Википедия

MechCommander 2 — Разработчик FASA Studio Издатель M … Википедия

Электромагнитная пушка Гаусса на микроконтроллере

Всем привет. В данной статье рассмотрим, как изготовить портативную электромагнитную пушку Гаусса, собранную с применением микроконтроллера. Ну, насчет пушки Гаусса я, конечно, погорячился, но то, что это – электромагнитная пушка, нет сомнения. Данное устройство на микроконтроллере было разработано для того, чтобы обучить начинающих программированию микроконтроллеров на примере конструирования электромагнитной пушки своими руками.Разберем некоторые конструктивные моменты как в самой электромагнитной пушке Гаусса, так и в программе для микроконтроллера.

С самого начала нужно определиться с диаметром и длиной ствола самой пушки и материалом, из которого она будет изготовлена. Я применил пластиковый футляр диаметром 10 мм из-под ртутного термометра, поскольку он у меня валялся без дела. Вы можете использовать любой доступный материал, обладающий не ферромагнитными свойствами. Это стекло, пластик, медная трубка и т. д. Длина ствола может зависеть от количества применяемых электромагнитных катушек. В моем случае используется четыре электромагнитных катушки, длина ствола составила двадцать сантиметров.

Что касается диаметра применяемой трубки, то в процессе работы электромагнитная пушка показала, что нужно учитывать диаметр ствола относительно применяемого снаряда. Проще говоря, диаметр ствола не должен намного превышать диаметр применяемого снаряда. В идеале, ствол электромагнитной пушки должен подходить под сам снаряд.

Материалом для создания снарядов послужила ось от принтера диаметром пять миллиметров. Из данного материала и были изготовлены пять болванок длиной 2,5 сантиметра. Хотя также можно применять стальные болванки, скажем, из проволоки или электрода – что найдется.

Нужно уделить внимание и весу самого снаряда. Вес по возможности должен быть небольшим. Мои снаряды слегка тяжеловаты получились.

Перед созданием данной пушки были проведены эксперименты. В качестве ствола использовалась пустая паста от ручки, в качестве снаряда – иголка. Иголка с легкостью пробивала обложку журнала, установленного неподалеку от электромагнитной пушки.

Поскольку оригинальная электромагнитная пушка Гаусса строится по принципу заряда конденсатора большим напряжением, порядка трехсот вольт, то в целях безопасности начинающим радиолюбителям следует запитывать её низким напряжением, порядка двадцати вольт. Низкое напряжение приводит к тому, что дальность полета снаряда не очень большая. Но опять же, всё зависит от количества применяемых электромагнитных катушек. Чем больше электромагнитных катушек применяется, тем больше получается ускорение снаряда в электромагнитной пушке. Также имеют значение диаметр ствола (чем меньше диаметр ствола, тем снаряд летит дальше) и качество намотки непосредственно самих электромагнитных катушек. Пожалуй, электромагнитные катушки – самое основное в устройстве электромагнитной пушки, на это нужно обратить серьёзное внимание, чтобы добиться максимального полета снаряда.

Я приведу параметры своих электромагнитных катушек, у вас они могут быть другими. Катушка наматывается проводом диаметром 0,2 мм. Длина намотки слоя электромагнитной катушки составляет два сантиметра и содержит шесть таких рядов. Каждый новый слой я не изолировал, а начинал намотку нового слоя на предыдущий. Из-за того, что электромагнитные катушки запитываются низким напряжением, вам нужно получить максимальную добротность катушки. Поэтому все витки наматываем плотно друг другу, виток к витку.

Что касается подающего устройства, то тут особые пояснения не нужны. Все паялось из отходов фольгированного текстолита, оставшегося от производства печатных плат. На рисунках все подробно отображено. Сердцем подающего устройства является сервопривод SG90, управляемый микроконтроллером. Купить можно тут

Подающий шток изготовлен из стального прутка диаметром 1,5 мм, на конце штока запаяна гайка м3 для сцепления с сервоприводом. На качалке сервопривода для увеличения плеча установлена загнутая с двух концов медная проволока диаметром 1,5 мм.

Данного нехитрого устройства, собранного из подручных материалов, вполне хватает, чтобы подать снаряд в ствол электромагнитной пушки. Подающий шток должен полностью выходить из загрузочного магазина. В качестве направляющей для подающего штока послужила треснувшая латунная стойка с внутренним диаметром 3 мм и длиной 7 мм. Жалко было выбрасывать, вот и пригодилось, собственно, как и кусочки фольгированного текстолита.

Программа для микроконтроллера atmega16 создавалась в AtmelStudio, и является полностью открытым проектом для вас. Рассмотрим некоторые настройки в программе микроконтроллера, которые придется произвести. Для максимально эффективной работы электромагнитной пушки вам понадобится настроить в программе время работы каждой электромагнитной катушки. Настройка производится по порядку. Сначала подпаиваете в схему первую катушку, все остальные не подключаете. Задаете в программе время работы (в миллисекундах).

Научно-исследовательская работа по теме: ««Изготовление пушки гаусса в домашних условия и исследование ее характеристик»

ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКАЯ ГОСУДАРСТВЕННАЯ ОБЛАСТНАЯ АКАДЕМИЯ (НАЯНОВОЙ)»

Всероссийский конкурс исследовательских работ

«Познание-2015»

(Секция физика)

по теме: ««изГОТОВЛЕНИЕ ПУШКИ ГАУССА В ДОМАШНИХ УСЛОВИЯ И ИССЛЕДОВАНИЕ ЕЕ ХАРАКТЕРИСТИК»

Ф. И.О. Егоршин Антон

СГОАН, 9 «А2» класс

учебное заведение, класс

к. п.н., преподаватель физики

зав. кафедры физики СГОАН

(уч. степень, должность)

3. Формулы, для расчета характеристик модели Пушки Гаусса. 6

5. Определение КПД модели…………………………………..….10

6. Дополнительные исследования…………….…………….….…11

В данной работе мы исследуем пушку Гаусса, которою многие могли видеть в некоторых компьютерных играх. Электромагнитная пушка Гаусса известна всем любителям компьютерных игр и фантастики. Назвали ее в честь немецкого физика Карла Гаусса, исследовавшего принципы электромагнетизма. Но так ли уж далеко смертельное фантастическое оружие от реальности?

Из курса школьной физики мы узнали, что электрический ток, проходя по проводникам, создает вокруг них магнитное поле. Чем больше ток, тем сильнее магнитное поле. Наибольший практический интерес представляет собой магнитное поле катушки с током, иначе говоря, катушки индуктивности (соленоид). Если катушку с током подвесить на тонких проводниках, то она установится в то же положение, в котором находится стрелка компаса. Значит, катушка индуктивности имеет два полюса – северный и южный.

Пушка Гаусса состоит из соленоида, внутри которого находится ствол из диэлектрика. В один из концов ствола вставляется снаряд, сделанный из ферромагнетика. При протекании электрического тока в соленоиде возникает магнитное поле, которое разгоняет снаряд, «втягивая» его внутрь соленоида. На концах снаряда при этом образуются полюса, симметричные полюсам катушки, из-за чего после прохода центра соленоида снаряд может притягиваться в обратном направлении и тормозиться.

Для наибольшего эффекта импульс тока в соленоиде должен быть кратковременным и мощным. Как правило, для получения такого импульса используются электрические конденсаторы. Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к соленоиду индуктивность магнитного поля в соленоиде была максимальна, но при дальнейшем приближении снаряда резко падала.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды стрелкового оружия. Это отсутствие гильз, неограниченность в выборе начальной скорости и энергии боеприпаса, возможность бесшумного выстрела, в том числе без смены ствола и боеприпас. Относительно малая отдача (равная импульсу вылетевшего снаряда, нет дополнительного импульса от пороховых газов или движущихся частей). Теоретически, большая надежность и износостойкость, а также возможность работы в любых условиях, в том числе космического пространства. Также возможно применение пушек Гаусса для запуска легких спутников на орбиту.

Читайте также:  Инфракрасный барьер своими руками

Однако, несмотря на кажущуюся простоту, использование её в качестве оружия сопряжено с серьёзными трудностям:

Низкий КПД – около 10 %. Отчасти этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД редко достигает 30%. Поэтому пушка Гаусса по силе выстрела проигрывает даже пневматическому оружию. Вторая трудность – большой расход энергии и достаточно длительное время накопительной перезарядки конденсаторов, что заставляет вместе с пушкой Гаусса носить и источник питания. Можно значительно увеличить эффективность, если использовать сверхпроводящие соленоиды, однако это потребует мощной системы охлаждения, что значительно уменьшит мобильность пушки Гаусса.

Высокое время перезаряда между выстрелами, то есть низкая скорострельность. Боязнь влаги, ведь намокнув, она поразит током самого стрелка.

Но главная проблема это мощные источники питания пушки, которые на данный момент являются громоздкими, что влияет на мобильность.

Таким образом, на сегодняшний день пушка Гаусса для орудий с малой поражающей способностью (автоматы, пулеметы и т. д.) не имеет особых перспектив в качестве оружия, так как значительно уступает другим видам стрелкового вооружения. Перспективы появляются при использовании ее как крупно-калиберного орудия военно-морского. Так например, в 2016 году ВМС США приступят к испытаниям на воде рельсотрона. Рельсотрон, или рельсовая пушка — орудие, в котором снаряд выбрасывается не с помощью взрывчатого вещества, а с помощью очень мощного импульса тока. Снаряд располагается между двумя параллельными электродами — рельсами. Снаряд приобретает ускорение за счёт силы Лоренца, которая возникает при замыкании цепи. С помощью рельсотрона можно разогнать снаряд до гораздо больших скоростей, чем с помощью порохового заряда.

Однако, принцип электромагнитного ускорения масс можно с успехом использовать на практике, например, при создании строительных инструментов – актуальное и современное направление прикладной физики. Электромагнитные устройства, преобразующие энергию поля в энергию движения тела, в силу разных причин ещё не нашли широкого применения на практике, поэтому имеет смысл говорить о новизне нашей работы.

Актуальность проекта: данный проект является междисциплинарным и охватывает большое количество материала.

Цель работы: изучить устройство электромагнитного ускорителя масс (пушки Гаусса), а также принципы его действия и применение. Собрать действующую модель Пушки Гаусса и определить ее КПД.

1. Рассмотреть устройство по чертежам и макетам.

2. Изучить устройство и принцип действия электромагнитного ускорителя масс.

3. Создать действующую модель.

4. Определить КПД модели

Практическая часть работы:

Создание функционирующей модели ускорителя масс в условиях дома.

Гипотеза: возможно ли создание простейшей функционирующей модели Пушки Гаусса в условиях дома?

Кратко о самом Гауссе.

(1777-1855) — немецкий математик, астроном, геодезист и физик.

Для творчества Гаусса характерна органическая связь между теоретической и прикладной математикой, широта проблематики. Труды Гаусса оказали большое влияние на развитие алгебры (доказательство основной теоремы алгебры), теории чисел (квадратичные вычеты), дифференциальной геометрии (внутренняя геометрия поверхностей), математической физики (принцип Гаусса), теории электричества и магнетизма, геодезии (разработка метода наименьших квадратов) и многих разделов астрономии.

Карл Гаусс родился 30 апреля 1777, Брауншвейг, ныне Германия. Скончался 23 февраля 1855, Геттинген, Ганноверское королевство, ныне Германия). Еще при жизни он был удостоен почетного титула «принц математиков». Он был единственным сыном бедных родителей. Школьные учителя были так поражены его математическими и лингвистическими способностями, что обратились к герцогу Брауншвейгскому с просьбой о поддержке, и герцог дал деньги на продолжение обучения в школе и в Геттингенском университете (в 1795-98). Степень доктора Гаусс получил в 1799 в университете Хельмштедта.

Открытия в области физики

В 1830-1840 годы Гаусс много внимания уделяет проблемам физики. В 1833 в тесном сотрудничестве с Вильгельмом Вебером Гаусс строит первый в Германии электромагнитный телеграф. В 1839 выходит сочинение Гаусса «Общая теория сил притяжения и отталкивания, действующих обратно пропорционально квадрату расстояния», в которой излагает. основные положения теории потенциала и доказывает знаменитую теорему Гаусса—Остроградского. Работа «Диоптрические исследования» (1840) Гаусса посвящена теории построения изображений в сложных оптических системах.

Формулы, связанные с принципом действия пушки.

Кинетическая энергия снаряда


— масса снаряда
— его скорость

Энергия, запасаемая в конденсаторе

— напряжение конденсатора

— ёмкость конденсатора

Время разряда конденсаторов

Это время за которое конденсатор полностью разряжается:

— индуктивность

— ёмкость

Время работы катушки индуктивности

Это время за которое ЭДС катушки индуктивности возрастает до максимального значения (полный разряд конденсатора) и полностью падает до 0.

— индуктивность

— ёмкость

Одним из основных элементом пушки Гаусса это электрический конденсатор. Конденсаторы бывают полярные и неполярные – практически все конденсаторы большой емкости, используемые в магнитных ускорителях, электролитические и являются полярными. Т. е. очень важно правильное его подключение – положительный заряд подаем к выводу “+”, а отрицательный к “-”. Алюминиевый корпус электролитического конденсатора, кстати, так же является выводом “-”. Зная емкость конденсатора и его максимальное напряжение можно найти энергию, которую может накапливать этот конденсатор. В нашей схеме будут два конденсатора суммарной емкостью 2000 мкФ. По приведенной выше формуле рассчитаем энергию конденсатора.

Зная энергию конденсаторов можно найти ориентировочную кинетическую энергию снаряда – или попросту мощность будущего магнитного ускорителя.

Система «конденсаторы – катушка» это колебательный контур. По приведенным выше формулам можно рассчитать период колебаний.

Индуктивность многослойной катушки можно рассчитать по формуле:

Индуктивность рассчитаем с учетом наличия внутри катушки гвоздя. Поэтому относительную магнитную проницаемость возьмем примерно 100-500. Для изготовления пушки мы изготовили самостоятельно катушку индуктивности с количеством витков 350 (7 слоев по 50 витков, каждый), получили катушку индуктивностью 13,48 мкГн.

Сопротивление проводов рассчитаем по стандартной формуле .

Чем меньше сопротивление, тем лучше. На первый взгляд кажется, что провод большого диаметра лучше, однако это вызывает увеличение геометрических размеров катушки и уменьшение плотности магнитного поля в её середине, так что тут придется искать свою золотую середину.

Из анализа литературы мы пришли к выводу, что для пушки Гаусса, изготавливаемую в домашних условиях медный намоточный провод диаметром 0,8-1,2 мм является вполне приемлемым.

Мощность активных потерь находится по формуле [Вт] Где: I – ток в амперах, R – активное сопротивление проводов в омах.

В этой работе мы не предполагали измерение силы тока и расчет потерь, это вопросы будущей работы, где мы планируем определить ток и энергию катушки. Энергия катушки равна . Из анализа литературы мы сделали вывод, что примерно 50% энергии конденсаторов всегда теряется на активном сопротивлении пушки.

Для изготовления пушки мы изготовили самостоятельно катушку индуктивности с количеством витков 350 (7 слоев по 50 витков, каждый), индуктивностью 13,48 мкГн. Два конденсатора суммарной емкостью 2000 мкФ. Собрали модель по следующей схеме:

Для расчета технических характеристик пушки мы использовали следующие формулы: ; .

Ниже представлены технические характеристики пушки.

1. Снаряды: сверло, гвоздь, маленький гвоздь, иглы.

2. Катушка индуктивности: 350 витков, 7 слоев по 50 в каждом; 13.48 мкГн

3. Средняя скорость вылета снаряда массой 1 г: 107 м/с

4. Дульная энергия или кинетическая энергия снаряда: 5 Дж

5. Суммарная ёмкость конденсаторов: 2000 мкФ

Внешний вид модели, в коробке представлен на фотографии ниже:

ОПРЕДЕЛЕНИЕ КПД МОДЕЛИ.

Для определения КПД мы провели следующий опыт: стреляли снарядом известной массы в яблоко, известной массы. Яблоко было подвешено на нити длиной 1 м. мы определяли расстояние, на которое отклонится яблоко. По данному отклонению определяем высоту подъема, воспользовавшись теоремой Пифагора.

Ссылка на основную публикацию