Универсальный индикатор разряда аккумулятора

13 схем индикаторов разряда Li-ion аккумуляторов: от простых к сложным

Что может быть печальнее, чем внезапно севший аккумулятор в квадрокоптере во время полета или отключившийся металлоискатель на перспективной поляне? Вот если бы можно было бы заранее узнать, насколько сильно заряжен аккумулятор! Тогда мы могли бы подключить зарядку или поставить новый комплект батарей, не дожидаясь грустных последствий.

И вот тут как раз рождается идея сделать какой-нибудь индикатор, который заранее подаст сигнал о том, что батарейка скоро сядет. Над реализацией этой задачи пыхтели радиолюбители всего мира и сегодня существует целый вагон и маленькая тележка различных схемотехнических решений – от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

Далее будут представлены только те индикаторы разряда li-ion аккумуляторов, которые не только проверены временем и заслуживают вашего внимания, но и с легкостью собираются своими руками.

Вариант №1

Начнем, пожалуй, с простенькой схемки на стабилитроне и транзисторе:

Разберем, как она работает.

Пока напряжение выше определенного порога (2.0 Вольта), стабилитрон находится в пробое, соответственно, транзистор закрыт и весь ток течет через зеленый светодиод. Как только напряжение на аккумуляторе начинает падать и достигает значения порядка 2.0В + 1.2В (падение напряжение на переходе база-эмиттер транзистора VT1), транзистор начинает открываться и ток начинает перераспределяться между обоими светодиодами.

Если взять двухцветный светодиод, то мы получим плавный переход от зеленого к красному, включая всю промежуточную гамму цветов.

Типовое различие прямого напряжения в двухцветных светодиодах составляет 0.25 Вольта (красный зажигается при более низком напряжении). Именно этой разницей определяется область полного перехода между зеленым и красным цветом.

Таким образом, не смотря на свою простоту, схема позволяет заранее узнать, что батарейка начала подходить к концу. Пока напряжение на аккумуляторе составляет 3.25В или более, горит зеленый светодиод. В промежутке между 3.00 и 3.25V к зеленому начинает подмешиваться красный – чем ближе к 3.00 Вольтам, тем больше красного. И, наконец, при 3V горит только чисто красный цвет.

Недостаток схемы в сложности подбора стабилитронов для получения необходимого порога срабатывания, а также в постоянном потреблении тока порядка 1 мА. Ну и, не исключено, что дальтоники не оценят эту задумку с меняющимися цветами.

Кстати, если в эту схему поставить транзистор другого типа, ее можно заставить работать противоположным образом – переход от зеленого к красному будет происходить, наоборот, в случае повышения входного напряжения. Вот модифицированная схема:

Вариант №2

В следующей схеме использована микросхема TL431, представляющая собой прецизионный стабилизатор напряжения.

Порог срабатывания определяется делителем напряжения R2-R3. При указанных в схеме номиналах он составляет 3.2 Вольта. При снижении напряжения на аккумуляторе до этого значения, микросхема перестает шунтировать светодиод и он зажигается. Это будет сигналом к тому, что полный разряд батареи совсем близок (минимально допустимое напряжение на одной банке li-ion равно 3.0 В).

Если для питания устройства применяется батарея из нескольких последовательно включенных банок литий-ионного аккумулятора, то приведенную выше схему необходимо подключить к каждой банке отдельно. Вот таким образом:

Для настройки схемы подключаем вместо батарей регулируемый блок питания и подбором резистора R2 (R4) добиваемся зажигания светодиода в нужный нам момент.

Вариант №3

А вот простая схема индикатора разрядки li-ion аккумулятора на двух транзисторах:Порог срабатывания задается резисторами R2, R3. Старые советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).

Вариант №4

Схема на двух полевых транзисторах, потребляющая в ждущем режиме буквально микротоки.

При подключении схемы к источнику питания, положительное напряжение на затворе транзистора VT1 формируется с помощью делителя R1-R2. Если напряжение выше напряжение отсечки полевого транзистора, он открывается и притягивает затвор VT2 на землю, тем самым закрывая его.

В определенный момент, по мере разряда аккумулятора, напряжение, снимаемое с делителя становится недостаточным для отпирания VT1 и он закрывается. Следовательно, на затворе второго полевика появляется напряжение, близкое к напряжению питания. Он открывается и зажигает светодиод. Свечение светодиода сигнализирует нам о необходимости подзаряда аккумулятора.

Транзисторы подойдут любые n-канальные с низким напряжением отсечки (чем меньше – тем лучше). Работоспособность 2N7000 в этой схеме не проверялась.

Вариант №5

На трех транзисторах:

Думаю, схема не нуждается в пояснениях. Благодаря большому коэфф. усиления трех транзисторных каскадов, схема срабатывает очень четко – между горящим и не горящим светодиодом достаточно разницы в 1 сотую долю вольта. Потребляемый ток при включенной индикации – 3 мА, при выключенном светодиоде – 0.3 мА.

Не смотря на громоздкий вид схемы, готовая плата имеет достаточно скромные габариты:

С коллектора VT2 можно брать сигнал, разрешающий подключение нагрузки: 1 – разрешено, 0 – запрещено.

Транзисторы BC848 и BC856 можно заменить на ВС546 и ВС556 соответственно.

Вариант №6

Эта схема мне нравится тем, что она не только включает индикацию, но и отрубает нагрузку.

Жаль только, что сама схема от аккумулятора не отключается, продолжая потреблять энергию. А жрет она, благодаря постоянно горящему светодиоду, немало.

Зеленый светодиод в данном случае выступает в роли источника опорного напряжения, потребляя ток порядка 15-20 мА. Чтобы избавиться от такого прожорливого элемента, вместо источника образцового напряжения можно применить ту же TL431, включив ее по такой схеме*:

*катод TL431 подключить ко 2-ому выводу LM393.

Вариант №7

Схема с применением так называемых мониторов напряжения. Их еще называют супервизорами и детекторами напряжения (voltdetector’ами). Это специализированные микросхемы, разработанные специально для контроля за напряжением.

Вот, например, схема, поджигающая светодиод при снижении напряжения на аккумуляторе до 3.1V. Собрана на BD4731.

Согласитесь, проще некуда! BD47xx имеет открытый коллектор на выходе, а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

Аналогичным образом можно применить любой другой супервизор на любое другое напряжение.

Вот еще несколько вариантов на выбор:

  • на 3.08V: TS809CXD, TCM809TENB713, MCP103T-315E/TT, CAT809TTBI-G;
  • на 2.93V: MCP102T-300E/TT, TPS3809K33DBVRG4, TPS3825-33DBVT, CAT811STBI-T3;
  • серия MN1380 (или 1381, 1382 – они отличаются только корпусами). Для наших целей лучше всего подходит вариант с открытым стоком, о чем свидетельствует дополнительная циферка “1” в обозначении микросхемы – MN13801, MN13811, MN13821. Напряжение срабатывания определяется буквенным индексом: MN13811-L как раз на 3,0 Вольта.

Также можно взять советский аналог – КР1171СПхх:

В зависимости от цифрового обозначения, напряжение детекции будет разным:

Сетка напряжений не очень-то подходит для контроля за li-ion аккумуляторами, но совсем сбрасывать эту микросхему со счетов, думаю, не стоит.

Неоспоримые достоинства схем на мониторах напряжения – чрезвычайно низкое энергопотребление в выключенном состоянии (единицы и даже доли микроампер), а также ее крайняя простота. Зачастую вся схема умещается прямо на выводах светодиода:

Чтобы сделать индикацию разряда еще более заметной, выход детектора напряжения можно нагрузить на мигающий светодиод (например, серии L-314). Или самому собрать простейшую “моргалку” на двух биполярных транзисторах.

Пример готовой схемы, оповещающей о севшей батарейке с помощью вспыхивающего светодиода приведен ниже:

Еще одна схема с моргающим светодиодом будет рассмотрена ниже.

Вариант №8

Крутая схема, запускающая моргание светодиода, если напряжение на литиевом аккумуляторе упадет до 3.0 Вольта:

Эта схема заставляет вспыхивать сверхяркий светодиод с коэффициентом заполнения 2.5% (т.е. длительная пауза – коротка вспышка – опять пауза). Это позволяет снизить потребляемый ток до смешных значений – в выключенном состоянии схема потребляет 50 нА (нано!), а в режиме моргания светодиодом – всего 35 мкА. Сможете предложить что-нибудь более экономичное? Вряд ли.

Как можно было заметить, работа большинства схем контроля за разрядом сводится к сравнению некоего образцового напряжения с контролируемым напряжением. В дальнейшем эта разница усиливается и включает/отключает светодиод.

Обычно в качестве усилителя разницы между опорным напряжением и напряжением на литиевом аккумуляторе используют каскад на транзисторе или операционный усилитель, включенный по схеме компаратора.

Но есть и другое решение. В качестве усилителя можно применить логические элементы – инверторы. Да, это нестандартное использование логики, но это работает. Подобная схема приведена в следующем варианте.

Вариант №9

Схема на 74HC04.

Рабочее напряжение стабилитрона должно быть ниже напряжение срабатывания схемы. Например, можно взять стабилитроны на 2.0 – 2.7 Вольта. Точная подстройка порога срабатывания задается резистором R2.

Схема потребляет от батареи около 2 мА, так что ее тоже надо включать после выключателя питания.

Вариант №10

Это даже не индикатор разряда, а, скорее, целый светодиодный вольтметр! Линейная шкала из 10 светодиодов дает наглядное представление о состоянии аккумулятора. Весь функционал реализован всего на одной-единственной микросхеме LM3914:

Читайте также:  Простой индукционный нагреватель 12 В

Делитель R3-R4-R5 задает нижнее (DIV_LO) и верхнее (DIV_HI) пороговые напряжения. При указанных на схеме значениях свечению верхнего светодиода соответствует напряжение 4.2 Вольта, а при снижении напряжения ниже 3х вольт, погаснет последний (нижний) светодиод.

Подключив 9-ый вывод микросхемы на “землю”, можно перевести ее в режим “точка”. В этом режиме всегда светится только один светодиод, соответствующий напряжению питания. Если оставить как на схеме, то будет светиться целая шкала из светодиодов, что нерационально с точки зрения экономичности.

В качестве светодиодов нужно брать только светодиоды красного свечения, т.к. они обладают самым малым прямым напряжением при работе. Если, например, взять синие светодиоды, то при севшем до 3х вольт аккумуляторе, они, скорее всего, вообще не загорятся.

Сама микросхема потребляет около 2.5 мА, плюс 5 мА на каждый зажженный светодиод.

Недостатком схемы можно считать невозможность индивидуальной настройки порога зажигания каждого светодиода. Можно задать только начальное и конечное значение, а встроенный в микросхему делитель разобьет этот интервал на равные 9 отрезков. Но, как известно, ближе к концу разряда, напряжение на аккумуляторе начинает очень стремительно падать. Разница между аккумуляторами, разряженными на 10% и 20% может составлять десятые доли вольта, а если сравнить эти же аккумуляторы, только разряженненные на 90% и 100%, то можно увидеть разницу в целый вольт!

Типичный график разряда Li-ion аккумулятора, приведенный ниже, наглядно демонстрирует данное обстоятельство:

Таким образом, использование линейной шкалы для индикации степени разряда аккумулятора представляется не слишком целесообразным. Нужна схема, позволяющая задать точные значения напряжений, при которых будет загораться тот или иной светодиод.

Полный контроль над моментами включения светодиодов дает схема, представленная ниже.

Вариант №11

Данная схема является 4-разрядным индикатором напряжения на аккумуляторе/батарейке. Реализована на четырех ОУ, входящих в состав микросхемы LM339.

Схема работоспособна вплоть до напряжения 2 Вольта, потребляет меньше миллиампера (не считая светодиода).

Разумеется, для отражения реального значения израсходованной и оставшейся емкости аккумулятора, необходимо при настройке схемы учесть кривую разряда используемого аккумулятора (с учетом тока нагрузки). Это позволит задать точные значения напряжения, соответствующие, например, 5%-25%-50%-100% остаточной емкости.

Вариант №12

Ну и, конечно, широчайший простор открывается при использовании микроконтроллеров со встроенным источником опорного напряжения и имеющих вход АЦП. Тут функционал ограничивается только вашей фантазией и умением программировать.

Как пример приведем простейшую схему на контроллере ATMega328.

Хотя тут, для уменьшения габаритов платы, лучше было бы взять 8-миногую ATTiny13 в корпусе SOP8. Тогда было бы вообще шикарно. Но пусть это будет вашим домашним заданием.

Светодиод взят трехцветный (от светодиодной ленты), но задействованы только красный и зеленый.

Готовую программу (скетч) можно скачать по этой ссылке.

Программа работает следующим образом: каждые 10 секунд опрашивается напряжение питания. Исходя из результатов измерений МК управляет светодиодами с помощью ШИМ, что позволяет получать различные оттенки свечения смешением красного и зеленого цветов.

Свежезаряженный аккумулятор выдает порядка 4.1В — светится зеленый индикатор. Во время зарядки на АКБ присутствует напряжение 4.2В, при этом будет моргать зеленый светодиод. Как только напряжение упадет ниже 3.5В, начнет мигать красный светодиод. Это будет сигналом к тому, что аккумулятор почти сел и его пора заряжать. В остальном диапазоне напряжений индикатор будет менять цвет от зеленого к красному (в зависимости от напряжения).

Вариант №13

Ну и на закуску предлагаю вариант переделки стандартной платы защиты (их еще называют контроллерами заряда-разряда), превращающий ее в индикатор севшего аккумулятора.

Эти платы (PCB-модули) добываются из старых батарей мобильных телефонов чуть ли не в промышленных масштабах. Просто подбираете на улице выброшенный аккумулятор от мобилы, потрошите его и плата у вас в руках. Все остальное утилизируете как положено.

Чаще всего PCB-плата представляет собой вот такую схемку:

Микросборка 8205 – это два миллиомных полевика, собранных в одном корпусе.

Внеся в схему некоторые изменения (показаны красным цветом), мы получим прекрасный индикатор разряда li-ion аккумулятора, практически не потребляющий ток в выключенном состоянии.

Так как транзистор VT1.2 отвечает за отключение зарядного устройства от банки аккумулятора от при перезаряде, то он в нашей схеме лишний. Поэтому мы полностью исключили этот транзистор из работы, разорвав цепь стока.

Резистор R3 ограничивает ток через светодиод. Его сопротивление необходимо подобрать таким образом, чтобы свечение светодиода было уже заметным, но потребляемый ток еще не был слишком велик.

Кстати, можно сохранить все функции модуля защиты, а индикацию сделать с помощью отдельного транзистор, управляющий светодиодом. То есть индикатор будет загораться одновременно с отключением аккумулятора в момент разряда.

Вместо 2N3906 подойдет любой имеющийся под рукой маломощный p-n-p транзистор. Просто подпаять светодиод напрямую не получится, т.к. выходной ток микросхемы, управляющий ключами, слишком мал и требует усиления.

Как, наверное, не сложно догадаться, схемы могут быть использованы и наоборот – в качестве индикатора заряда.

Простой индикатор заряда и разряда аккумулятора

Данный индикатор заряда аккумулятора основан на регулируемом стабилитроне TL431. С помощью двух резисторов можно установить напряжение пробоя в диапазоне от 2,5 В до 36 В.

Приведу две схемы применения TL431 в качестве индикатора заряда/разряда аккумулятора. Первая схема предназначена для индикатора разрядки, а вторая для индикатора уровня заряда.

Единственная разница — это добавление n-p-n транзистора, который будет включать какой-либо сигнализатор, например, светодиод или зуммер. Ниже приведу способ вычисления сопротивления R1 и примеры на некоторые напряжения.

Схема индикатора разряда аккумулятора

Стабилитрон работает таким образом, что начинает проводить ток при превышении на нем определенного напряжения, порог которого мы можем установить с помощью делителя напряжения на резисторах R1 и R2. В случае индикатора разряда, светодиодный индикатор должен гореть, когда напряжение батареи меньше, чем необходимо. Поэтому в схему добавлен n-p-n транзистор.

Как можно видеть регулируемый стабилитрон регулирует отрицательный потенциал, поэтому в схему добавлен резистор R3, задачей которого является включение транзистора, когда TL431 выключен. Резистор этот на 11k, подобранный методом проб и ошибок. Резистор R4 служит для ограничения тока на светодиоде, его можно вычислить с помощью закона Ома.

Конечно, можно обойтись и без транзистора, но тогда светодиод будет гаснуть, когда напряжение упадет ниже выставленного уровня — схема ниже. Безусловно, такая схема не будет работать при низких напряжениях из-за отсутствия достаточного напряжения и/или тока для питания светодиода. Данная схема имеет один минус, который заключается в постоянном потреблении тока, в районе 10 мА.

Схема индикатора заряда аккумулятора

В данном случае индикатор заряда будет гореть постоянно, когда напряжение больше, чем то, которые мы определили с помощью R1 и R2. Резистор R3 служит для ограничения тока на диод.

Пришло время для того, что всем нравится больше всего — математики ?

Я уже говорил в начале, что напряжение пробоя может изменяться от 2,5В до 36В посредством входа «Ref». И поэтому, давайте попытаемся кое-что подсчитать. Предположим, что индикатор должен загореться при снижении напряжении аккумулятора ниже 12 вольт.

Сопротивление резистора R2 может быть любого номинала. Однако лучше всего использовать круглые числа (для облегчения подсчета), например 1к (1000 Ом), 10к (10 000 Ом).

Резистор R1 рассчитаем по следующей формуле:

R1=R2*(Vo/2,5В — 1)

Предположим, что наш резистор R2 имеет сопротивление 1к (1000 Ом).

Vo — напряжение, при котором должен произойти пробой (в нашем случае 12В).

R1=1000*((12/2,5) — 1)= 1000(4,8 — 1)= 1000*3,8=3,8к (3800 Ом).

Т. е. сопротивление резисторов для 12В выглядят следующим образом:

А здесь небольшой список для ленивых. Для резистора R2=1к, сопротивление R1 составит:

  • 5В – 1к
  • 7,2В – 1,88к
  • 9В – 2,6к
  • 12В – 3,8к
  • 15В — 5к
  • 18В – 6,2к
  • 20В – 7к
  • 24В – 8,6к

Для низкого напряжения, например, 3,6В резистор R2 должен иметь бОльшее сопротивление, например, 10к поскольку ток потребления схемы при этом будет меньше.

Индикатор разряда литиевых аккумуляторов

Так как индикатор разряда батареи (п.3 комментария) целесообразно применять на любом автономном электронном устройстве, для исключения неожиданных сбоев или отказа аппаратуры в самый неподходящий момент при разряде батареи, то изготовление индикатора разряда вынесено отдельной статьей.

Применение индикатора разряда особенно важно для большинства литиевых аккумуляторов с номинальным напряжением 3.7 вольта (например, популярные сегодня 18650 и им аналогичные или распространенные плоские Li-ion аккумуляторы от заменяемых на смартфоны телефонов), т.к. они очень «не любят» разряд ниже 3,0 вольт и выходят при этом из строя. Правда, в большинство из них должны быть встроены схемы аварийной защиты от глубокого разряда, но кто знает какой аккумулятор в ваших руках, пока вы его не вскроете (Китай полон загадок).

Читайте также:  Гаусс ган

Но главное, хотелось бы заранее узнать, какой заряд в настоящее время имеется в используемом аккумуляторе. Тогда мы могли бы вовремя подключить зарядку или поставить новый аккумулятор, не дожидаясь грустных последствий. Поэтому нам нужен индикатор, который заранее подаст сигнал о том, что аккумулятор скоро сядет окончательно. Для реализации этой задачи существуют различные схемотехнические решения – от схем на одном транзисторе до навороченных устройств на микроконтроллерах.

В нашем случае, предлагается изготовить простой индикатор разряда литиевых аккумуляторов, который с легкостью собирается своими руками. Индикатор разряда отличается экономичностью и надежностью, компактностью и точностью определения контролируемого напряжения.

Схема индикатора разряда

Схема выполнена с применением, так называемых детекторов напряжения. Их еще называют мониторами напряжения. Это специализированные микросхемы, разработанные специально для контроля напряжения. Неоспоримые достоинства схем на мониторах напряжения – чрезвычайно низкое энергопотребление в дежурном режиме, а также ее крайняя простота и точность. Чтобы сделать индикацию разряда еще более заметной и экономичной, выход детектора напряжения нагружаем на мигающий светодиод или “мигалку” на двух биполярных транзисторах.

Применяемый в схеме детектор напряжения (DA1) PS Т529Н соединяет выход (вывод 3) микросхемы с общим проводом, при снижении контролируемого напряжения на батарее до 3,1 вольта, включая этим питание на генератор импульсов высокой скважности. При этом сверхяркий светодиод начинает вспыхивать с периодом: пауза – 15 сек., короткая вспышка – 1 сек. Это позволяет снизить потребляемый ток до 0,15 ma в паузе, и 4,8 ma при вспышке. При напряжении на аккумуляторе более 3,1 вольта, схема индикатора практически отключается и потребляет всего 3 мкa.

Как показала практика, указанного цикла индикации вполне достаточно, чтобы увидеть сигнал. Но при желании можно установить более удобный для вас режим подбором резистора R2 или конденсатора С1. В связи с малым током потребления устройства, отдельный выключатель напряжения питания для индикатора не предусмотрен. Устройство работоспособно при снижении питающего напряжения до 2,8 вольта.

Изготовление зарядного устройства

1. Комплектация.
Приобретаем или подбираем из имеющихся в наличии, комплектующие для сборки в соответствии со схемой.

2. Сборка схемы.
Для проверки работоспособности схемы и ее настройки, собираем индикатор разряда на универсальной монтажной плате. Для удобства наблюдения (большая частота импульсов), на время проверки, заменяем конденсатор С1 на конденсатор меньшей емкости (например 0,47 мкф). Подключаем схему к блоку питания с возможностью плавной регулировки постоянного напряжения в пределах от 2 до 6 вольт.

3. Проверка схемы.
Медленно понижаем напряжение питания индикатора разряда, начиная с 6 вольт. Наблюдаем на дисплее тестера величину напряжения, при которой включится детектор напряжения (DA1) и начнет мигать светодиод. При правильном подборе детектора напряжения, момент переключения должен состояться в районе 3,1 вольта.

4. Готовим плату для монтажа и пайки деталей.
Вырезаем необходимый для монтажа кусочек из универсальной печатной платы, аккуратно обрабатываем края платы напильником, очищаем и лудим контактные дорожки. Размер вырезаемой платы зависит от применяемых деталей и их компоновки при монтаже. Размеры платы на фото 22 х 25 мм.

5. Монтаж отлаженной схемы на рабочую плату
При положительном результате в работе схемы на монтажной плате, переносим детали на рабочую плату, паяем детали, выполняем недостающую разводку соединений тонким монтажным проводом. По окончании сборки проверяем монтаж. Схема может быть собрана любым удобным способом, в том числе и навесным монтажом.

6. Проверка рабочей схемы индикатора разряда
Проверяем работоспособность схемы индикатора разряда и ее настройки, подключив схему к блоку питания, а затем к тестируемому аккумулятору. При напряжении в цепи питания менее 3,1 вольта, индикатор разряда должен включиться.

Вместо применяемого в схеме детектора напряжения (DA1) PS Т529Н на контролируемое напряжение 3,1 вольта, возможно применить аналогичные микросхемы других производителей, например BD4731. Этот детектор имеет открытый коллектор на выходе (о чем свидетельствует дополнительная циферка «1» в обозначении микросхемы), а также самостоятельно ограничивает выходной ток на уровне 12 мА. Это позволяет подключать к ней светодиод напрямую, без ограничительных резисторов.

В схеме также возможно применить детекторы на напряжение 3.08 вольта – TS809CXD, TCM809TENB713, МСР103Т-315Е/ТТ, САТ809ТТВI-G. Точные параметры выбираемых детекторов напряжения желательно уточнить в их datasheet.

Аналогичным образом можно применить и другой детектор напряжения на любое другое необходимое для работы индикатора напряжение.

Решение по второй части вопроса в п.3 приведенного комментария – работы индикатора разряда только при наличии освещенности, отложено по следующим причинам:
– работа дополнительных элементов в схеме, требует дополнительных затрат энергии от аккумулятора, т.е. страдает экономичность схемы;
– работа индикатора разряда днем, чаще всего, бесполезна, т.к. в комнате нет «зрителей», а к вечеру заряд батареи может и закончиться;
– работа индикатора в темное время суток ярче и эффективнее, а для быстрого отключения устройства имеется выключатель питания.

Применение, предложенного по п.2 комментария, отечественного операционного усилителя не рассматривал, по причине отладки режимов работы схемы по минимальным токам, в процессе доводки на монтажной плате.

Для решения задачи по п. 1 комментария, несколько изменил схему устройства «Ночник с акустическим включателем». Для чего включил положительную шину питания акустического реле через инвертор на VT3, с управлением от постоянно работающего фотореле.

Таким образом, добавив две детали (на монтажной плате выделены овалом), получили возможность частично отключать акустическое реле в светлое время суток. Частичное отключение потому, что различные элементы обеих микросхем работают и в акустическом и в фото реле, но имеют общее питание, следовательно не отключаются полностью. Тем не менее некоторый эффект по энергосбережению имеется.
До доработки, схема устройства потребляла в дежурном режиме 1,1 ma.

После доработки, схема устройства потребляет в дежурном режиме в светлое время – 0,4 ma, в темное время – 1,7 ma (разница в 0,6 ma – плата за работу VT3).

Таким образом, можно посчитать, что в летнее время доработка оправдана и дает экономию, а зимой (когда длинные ночи) менее выгодна. Но имеется простое решение – шунтировать VT3 двухпозиционным переключателем «зима-лето» или «вкл-выкл».

Недорогой эффективный индикатор разряда батареи

Maxim MAX9030

Application Note 1872

В этой статье представлена схема, в которой для визуальной светодиодной индикации разряда батареи использован маломощный КМОП компаратор. Светодиод управляется выходом LBO DC/DC преобразователя на низкой частоте и с низким коэффициентом заполнения. Схема практически не забирает от батареи дополнительного тока, что могло бы привести к необратимому повреждению батареи и, безусловно, внесло бы вклад в загрязнение окружающей среды. Кроме того, эта схема помогает сохранять энергию батареи путем отключения компаратора между циклами измерений. Для определения коэффициента заполнения и пороговых уровней компаратора приведены расчетные формулы и выполнен анализ схемы.

Обычным способом индикации разряда батареи, используемым в большей части оборудования с батарейным питанием, является включение светодиода. Однако, потребляя ток, светодиод усугубляет глубину разряда. Рассеиваемую светодиодом мощность вы можете значительно уменьшить, если он будет работать в импульсном режиме на низкой частоте и с низким коэффициентом заполнения.

Удобный способ управления светодиодом, показанный на Рисунке 1, предоставляет существующий у многих DC/DC преобразователей выход LBO (low-battery output – выход индикации разрядки батареи). MAX9030 – это миниатюрный недорогой компаратор с возможностью выключения, выпускаемый в 6-выводном корпусе SC70. До тех пор, пока напряжение батареи находится в пределах нормальных рабочих уровней, устройство остается отключенным, и включается по сигналу LBO, когда напряжение батареи падает ниже предустановленного порога.

Рисунок 1.Благодаря работе на низкой частоте и с низким коэффициентом
заполнения, этот индикатор разряда экономит энергию батареи
и продлевает срок ее службы.

Обратите внимание, что в представленной схеме сигнал LBO имеет высокий активный уровень. Если же активный уровень низкий, потребуется подключить дополнительную цепь, обведенную на схеме прямоугольником. Затем MAX9030 включается, и светодиод начинает мигать с частотой и периодичностью, определяемыми приведенными ниже расчетами.

Прежде всего, коэффициент заполнения должен быть низким:

Время tON включенного состояния получаем из формулы, описывающей заряд конденсатора:

Время tOFF пребывания в выключенном состоянии выводится из формулы для разряда конденсатора:

Уровни верхнего (VTRIPHI) и нижнего (VTRIPLO) порогов компаратора найдем, используя закон Кирхгофа для токов.

Читайте также:  Как сделать простой металлоискатель на одном транзисторе и АМ приемнике

Типичное выходное напряжение VOUT компаратора равно VDD. Предположив, что коэффициент заполнения равен 2.5%, а сигнал включает компаратор, когда напряжение батареи равно 3 В, получим, что нижний и верхний уровни порогов равны 1 В и 2 В, соответственно. Стандартные номиналы компонентов, отвечающие этим условиям, будут следующими:

R1 = R2 = R3 = 1 МОм,

Схема на Рисунке 1 пригодна для работы с сигналами LBO любой полярности (активный высокий или активный низкий). Типовой ток, потребляемый компаратором MAX9030, равен 35 мкА в активном режиме, и 0.05 мкА при отключении. Малые размеры схемы, низкое потребление мощности и невысокая цена идеально соответствуют требованиям, предъявляемым к системам с батарейным питанием.

Частая индикация разрядки или чрезмерный разряд нередко становятся причиной повреждения аккумуляторов. Это особенно опасно для металло-гидридных (NiMh) и литий-ионных (Li+) аккумуляторов. Напряжение на ненагруженной, полностью заряженной металло-гидридной ячейке равно 1.4 В. Она обеспечивает устройство средним напряжением питания 1.2 В и может разряжаться примерно до 0.9 В. Любой дальнейший разряд потенциально может привести к необратимому повреждению ячейки. Аналогично, литий-ионная ячейка при напряжении холостого хода 4.2 В способна питать схему номинальным средним напряжением 3.6 В. Она может разрядиться до напряжения порядка 2.5 В, однако, чтобы не нанести им вреда, литий-ионные элементы никогда нельзя разряжать ниже уровня 3 В. Большинство вышедших из строя аккумуляторов превращается в опасные отходы и, возможно, оказывается на свалках.

Проблема защиты окружающей среды от опасных отходов является глобальной. Эта практическая схема позволит избежать чрезмерного разряда аккумуляторов, а значит, сократить количество батарей, оказывающихся на свалке, и негативно воздействующих на окружающую среду.

Материалы по теме

Перевод: AlexAAN по заказу РадиоЛоцман

Поделки своими руками для автолюбителей

Простой и точный индикатор заряда-разряда АКБ

Сегодня статья будет с процессом сборки простого индикатора уровня заряда аккумуляторов, но с более высокоточной схемой, которая пригодна для реального использования и может стать отличным дополнением на панели приборов вашего автомобиля.

Индикатор построен на базе микросхемы ELM339, она в свою очередь представляет из себя четыре отдельных компаратора в едином корпусе.

Компаратор имеет два входа и один выход, он просто сравнивает напряжение на входах, исходя из этого на выходе получаем либо логический 0, либо единицу.

Использованный в схеме компаратор можно найти на платах компьютерного блока питания, ориентируйтесь по цифрам 339, буквы могут отличаться в зависимости от производителя.

В качестве индикаторов задействованы 3 миллиметровые светодиоды.

Схема работает очень простым образом, имеем источник опорного напряжения в лице стабилитрона, цепочки из резисторов представляют из себя делители, которые создают на входах компараторов определенное напряжение, назовем их пороговыми.

Компаратор постоянно сравнивает эти напряжения с напряжением, которые образуют делитель на резисторах R5 и R6, этот делитель снижает напряжение тестируемой батареи в три раза, если напряжение на прямом входе компаратора больше чем на инверсном, то на выходе получаем логическую единицу или напряжение питания.

Светодиод светится, если всё наоборот, то на выходе получаем логическую 0 или массу питания, светодиод в данном случае не светится.

Входные делители подобраны в узком диапазоне, поскольку схема предназначена для работы в качестве индикатора заряда 12-вольтовых аккумуляторов.

Маломощный диод 4148 защищает микросхему компаратора от обратной полярности.

Токо-ограничивающие резисторы для светодиодов подбираются с сопротивлением от 1 до 2,2 килом, можно ограничиться всего одним резистором.

Печатная плата довольно компактна, рисовал на скорую руку, но разводка неплохая, кстати её вы можете скачать в конце статьи.

Для проверки этой платы нам нужен лабораторный источник питания на котором нужно выставить напряжение около 13,5 — 14 вольт, имитируя полностью заряженный автомобильный аккумулятор.

Загораются сразу все светодиоды, постепенно снижая напряжение на блоке питания мы можем наблюдать потухание светодиодов при определенных напряжениях.

Горение только красных светодиодов означает, что аккумулятор почти разряжен.

Можно пересчитать входные делители и использовать схему для аккумуляторов с иным напряжением, кстати эту схему можно также применить и в зарядных устройствах.

Схема индикатора заряда аккумулятора на светодиодах

Зачем следить за состоянием аккумулятора?

Автомобильный аккумулятор состоит из шести последовательно соединённых аккумуляторных батарей с напряжением питания 2,1 — 2,16В. В норме АКБ должен выдавать 13 — 13,5В. Нельзя допускать значительного разряда аккумуляторной батареи, поскольку при этом падает плотность и, соответственно, повышается температура промерзания электролита.

Чем выше износ аккумулятора, тем меньшее время он удерживает заряд. В тёплое время года это не критично, а вот зимой забытые во включённом состоянии габаритные огни к моменту возвращения способны полностью «убить» аккумулятор, превратив содержимое в кусок льда.

В таблице можно увидеть температуру промерзания электролита, в зависимости от степени заряженности агрегата.

Зависимость температуры промерзания электролита от степени заряда аккумулятора
Плотность электролита, мг/см. куб.Напряжение, В (без нагрузки)Напряжение, В (с нагрузкой 100 А)Степень заряда АКБ, %Температура замерзания электролита, гр. Цельсия
111011,78,40,0-7
113011,88,710,0-9
114011,98,820,0-11
115011,99,025,0-13
116012,09,130,0-14
118012,19,545,0-18
119012,29,650,0-24
121012,39,960,0-32
122012,410,170,0-37
123012,410,275,0-42
124012,510,380,0-46
127012,710,8100,0-60

Критическим считается падение уровня заряда ниже 70%. Все автомобильные электроприборы потребляют не напряжение, а ток. Без нагрузки даже сильно разряженный аккумулятор может показывать нормальное напряжение. Но при низком уровне, во время запуска двигателя, будет отмечаться сильная «просадка» напряжения, что является тревожным сигналом.

Своевременно заметить приближающуюся катастрофу возможно лишь в том случае, когда непосредственно в салоне установлен индикатор. Если во время работы автомобиля он постоянно сигнализирует о разрядке – пора ехать на СТО.

Какие существуют индикаторы

Многие АКБ, особенно необслуживаемые, имеют встроенный датчик (гигрометр), принцип работы которого основан на измерении плотности электролита.

Этот датчик контролирует состояние электролит и ценность его показателей относительна. Не очень удобно по несколько раз залазить под капот автомобиля, что бы проконтролировать состояние электролита в разных режимах работы.

Для контроля состояния АКБ значительно удобнее электронные приборы.

Виды индикаторов заряда аккумуляторной батареи

В автомагазинах продаётся множество таких устройств, различающихся дизайном и функционалом. Фабричные приборы условно делятся на нескольких типов.

По способу подключения:

  • к разъёму прикуривателя;
  • к бортовой сети.

По способу отображения сигнала:

Принцип работы у них одинаков, определение уровня заряда АКБ и отображение информации в наглядном виде.

Принципиальная схема индикатора

Как сделать индикатор заряда аккумулятора на светодиодах?

Существуют десятки разнообразных схем контроля, но результат они выдают идентичный. Подобное устройство возможно собрать самостоятельно из подручных материалов. Выбор схемы и комплектующих зависит исключительно от ваших возможностей, фантазии и ассортимента ближайшего магазина радиотоваров.

Вот схема для понимания как работает индикатор заряда аккумулятора на светодиодах. Такую портативную модель можно собрать «на коленке» за несколько минут.

Д809 – стабилитрон на 9В ограничивает напряжение на светодиодах, а на трёх резисторах собран сам дифференциатор. Такой светодиодный индикатор срабатывает на силу тока в цепи. При напряжении 14В и выше сила тока достаточно для свечения всех светодиодов, при напряжении 12-13,5В светятся VD2 и VD3, ниже 12В — VD1.

Более продвинутый вариант при минимуме деталей можно собрать на бюджетном индикаторе напряжения — микросхеме AN6884 (KA2284).

Схема led индикатора уровня заряда АКБ на компараторе напряжения

Схема работает по принципу компаратора. VD1 – стабилитрон на 7,6В, он служит в качестве эталонного источника напряжения. R1 – делитель напряжения. При первоначальной настройке он выставляется в такое положение, чтобы при напряжении 14В светились все светодиоды. Напряжение, поступающее на входы 8 и 9, сравнивается через компаратор, а результат дешифруется на 5 уровней, зажигая соответствующие светодиоды.

Контроллер зарядки АКБ

Что бы отслеживать состояние аккума во время работы зарядного устройства, делаем контроллер заряда АКБ. Схема устройства и используемые компоненты максимально доступны, в то же время обеспечивают полный контроль над процессом подзарядки батарей.

Принцип работы контроллера следующий: пока напряжение на аккумуляторе ниже напряжения заряда – горит зелёный светодиод. Как только напряжение сравняется, открывается транзистор, зажигая красный светодиод. Изменение резистора перед базой транзистора меняет уровень напряжения, необходимого для открытия транзистора.

Это универсальная схема контроля, которую можно использовать как для мощных автомобильных аккумуляторов, так и для миниатюрных литиевых батареек-аккумуляторов.

Ссылка на основную публикацию